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Abstract

Animals use a variety of environmental cues in order to recognise their location. One
of the key behaviours found in a certain type of biological neuron – known as place cells
– is a rate-coding effect: a neuron’s rate of firing decreases with distance from some
landmark location. In this work, we used visual information from wearable and hand-
held cameras in order to reproduce this rate-coding effect in artificial place cells (APCs).
The accuracy of localisation using these APCs was evaluated using different visual de-
scriptors and different place cell widths. Simple localisation using APCs was feasible by
noting the identity of the APC yielding the maximum response. We also propose using
joint coding within a number of automatically defined APCs as a population code for self-
localisation. Using both approaches we were able to demonstrate good self-localisation
from very small images taken in indoor settings. The error performance using APCs is
favourable when compared with ground-truth and LSD-SLAM, even without the use of
a motion model.

1 Introduction
This work explores the potential of location-sensitive computational units to achieve self-
localisation by using the images from wearable or hand-held cameras. Our approach is mo-
tivated by studies of biological vision which suggest that, in many species, multiple strategies
are employed to help animals self-localise. Examples include the use of the visual horizon
and path integration in ants [18] and the use of optic flow in insects and birds [4, 12]. Indeed,
multiple computational approaches appear to be simultaneously at work even within a single
species and for one sensing modality, such as vision. Such approaches can be successfully
transferred from biology into computer vision; see for example, the combined use of op-
tic flow and image descriptors that were suggested to mimic the visual homing system of
insects [26].

Biological place cells display location-dependent firing. We describe how to mimic place
cell behaviour from appearance information in order to provide localisation within an indoor
environment. In terms of computer vision, our research question might be articulated as:
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Given a video sequence taken by a person as they walk, can we generate
artificial place cell responses that are able to localise that person with respect
to previous journeys?

1.1 Summary of Contributions

There are three primary contributions of this article. First, we suggest methods for appearance-
based localisation by mimicking the behaviour of hippocampal place cells; the computational
units of this behaviour – Artificial Place Cells (APCs) – are able to use distinctive infor-
mation from image queries based on the recall of previously visited places. Secondly, we
describe a complete pipeline of visual localisation that incorporates a decoder for the APC
activity; this decoder takes the form of a Generalized Regression Neural Network (GRNN).
Finally, we provide an evaluation of the proposed localisation method using a publicly avail-
able database of indoor sequences containing more than 120,000 frames and 3 km in length.
Results suggest that sub-metre localisation error is achievable within this dataset.

2 Background

Navigation is one of the more complex tasks performed by animals; it involves integration
of multiple sensory inputs, combining past information (memory) and also the execution of
physical actions to perform navigation movements.

John O’Keefe, together with Edvard and May-Britt Moser, received the Nobel Prize in
Physiology or Medicine (2014) for their discovery and subsequent elucidation of place and,
subsequently, grid cells in the brain, respectively. Their early findings suggested that navi-
gation in the moving rat is based on a cognitive map of the environment; in this map, a set
of landmarks is created, and the spatial relationship between these is used to navigate [11].
The implications are interesting, partly for the potential importance in understanding some
forms of dementia, but also because the cells encoding an organism’s own spatial position
are found in one of the less understood areas of mammalian brains: the hippocampus, with a
key role in memory, and its adjacent brain areas.

2.1 Biological Place Cells (BPCs)

Place cells are special types of neurons located in the hippocampus which attain higher-than-
average firing when an animal “recognises” a particular place in its environment. Grid cells,
located next to the hippocampus in the entorhinal cortex, provide the brain with a reference
system for navigation, a “grid” that is speculated to be used as a form of coordinate system
for the creation of spatial maps. Although the existence of place and grid cells is without
question, the computational description of what the cells do is debatable. However, the
combination of place and grid cells within neural circuitry appears crucial for the execution
of navigation tasks.

The physical region within a spatial environment over which a given place cell shows
elevated firing is sometimes referred to as its place field, though the term may also refer
to the mapping between an animal’s location and a cell’s firing rate. The combination of
multiple place fields yields a spatial map, and multiple spatial maps formed by combinations
of place cell activity patterns are thought to be stored in the hippocampus. It is the unique
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combination of place cell firing patterns in a specific order during movement that gives rise
to a unique spatial representation [20] of a journey.

The evidence is that many cues, and perhaps even self-motion itself, may be involved in
forming the observed location-selective response of biological place cells. The visual infor-
mation captured by the eyes should be seen as only one of the many sensory and internal
cues that lead to the spatially selective nature of biological place cell responses [10]. Nev-
ertheless, in many animals, and certainly in humans and primates, vision is a particularly
strong environmental cue to an organism’s awareness of its location [9].

2.2 Biologically Inspired Visual Localisation
Biologically-inspired methods of localisation from image data are emerging; for example,
a few computational models for place cell behaviour already exist, though they are often
rooted in dynamical systems [5],[3]. Some models of place cells use attractor properties of
recurrent networks [24], [17]. Whilst interesting and valuable, the role of sensory input is
marginalized in these models, a key differentiator of the approach we propose here.

The boundary vector cell (BVC) model [2] is a popular computational model that de-
scribes place cell response, allowing predictions to be made and experimentally tested [6].
Whilst of substantial interest in computational neuroscience, one criticism of the BVC model
is – like the dynamical systems models – a lack of detail in explaining how sensory process-
ing feeds into the computation. The closest work to the approach of this paper is Strosslin’s
[25], which uses a low-cost and computationally efficient model to navigate a robot. How-
ever, place cell behaviour – in terms of firing rates that vary with the position to some refer-
ence location – is not demonstrated except through the policy of a robot and its navigation
attempts. The visual processing is also rather limited, using techniques that are also em-
ployed in SLAM algorithms [1] to track specific scene locations.

Milford and colleagues have also applied SLAM techniques to biologically inspired lo-
calisation systems, setting a seminal precedent with RatSLAM [16], a persistent navigation
and mapping model based on modelling the hippocampus of rodents. RatSLAM continu-
ously performs SLAM while simultaneously interacting with other navigation systems, such
as odometry and landmark detection. More recent work [15] has been focused on taking Rat-
SLAM to larger scales and incorporating more complex visual landmark detection models.

3 Artificial Place Cells (APCs)

3.1 Modelling a Single Place Cell: the Tuning Curve Encoder
Given a series of video frames extracted from footage recorded during indoor navigation,
we made use of the visual path concept [14, 19, 22], to perform matching, or association,
between locations of a physical environment being traversed and a database of previously
captured journeys.

Our proposal – an evolution of that suggested for sensor and WiFi-based localisation –
is that an appearance-based method using visual features could be easily mined to create a
form of virtual landmarks. Such landmarks could be used to retrieve similar image locations
around the locale of a landmark. The similarity scores obtained from appearance-based com-
parison methods, applied between sequences of frames of a journey and these virtual land-
marks, should exhibit a behaviour that is similar to those recorded in mammalian place cells



4 RIVERA-RUBIO ET AL.: INDOOR LOCALISATION WITH REGRESSION NETWORKS

40 50 60 70 80 90 100
0

30

position (cm)

fi
ri

ng
 r

at
e 

(H
z)

(a) Firing rates of five BPC recordings covering different place
fields of moving rats. Different colours represent different place
cells. Adapted from [7].
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Figure 1: (Left) several BPC firing rate curves. (Right) Outline properties of the descriptors
used in this study.

(Fig. 1(a)). In other words, one should obtain high scores when locations are visually similar
or spatially close, and low ones when they are dissimilar, with a concave behaviour of scores
with distance to the landmark. Requiring such behaviour of location sensing computational
units would make them close to the behaviour of biological place cells.

In order to model the place cell behaviour based on the visual input provided by cameras,
we first need a way of describing the collection of patches in an image near to a virtual
landmark, and a means of comparing two images through their individual patch similarities.

We used visual features based on a set of publicly available keypoint and patch-based
descriptor techniques: keypoint-SIFT (SIFT) [13], dense-SIFT (DSIFT) [27], single-frame
(SF-GABOR) and spatio-temporal (ST-GABOR) Gabor based descriptors, and spatio-temporal
Gaussian based descriptors [22]. Table 1(b) summarizes the techniques and shows the num-
ber of elements of each descriptor. For the comparison with a state-of-the-art SLAM method,
we chose Engel’s LSD-SLAM [8].

3.2 Encoding Frames of Video
Given a sequence of video frames, each of which is described by a collection of descriptor
vectors, the task of comparing frames can be done by comparing vector pairs. Whilst a pair
of frames captured in two different journeys might differ for a number of reasons that include
partial occlusion, motion blur, lighting changes and object/scene changes, one would expect
that there might be some patches that are similar. However, in a 1 minute video, one might
capture 1,500 frames, with each frame containing several thousand patch descriptors, each
of them a high-dimensional vector.

One solution to this “curse of dimensionality” is to use vector quantisation (VQ, 4th

module of the pipeline described in Fig. 5), creating a mapping (codebook) that reduces
each of the descriptors to a single number representing the identifier of an area of descriptor
space. We applied the k-means algorithm with k = 400 to samples of video data acquired
from corridors in order to generate the VQ codebook. Patch descriptors were L2 normalized
prior to applying the k-means algorithm, then each frame was separately encoded into a
400-element Frame-Encoding Vector (FEV).

3.3 Comparing Frames
In order to model place cell behaviour, we need to map pairs of frames onto a scalar value
that is analogous – perhaps after a non-linearity and affine scaling – to a firing rate. Consider
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(a) Each curve, known as a place cell tuning curve, represents
the firing rate of an individual place cell to a position along a
one-dimensional path. The simplest decoding of place cell re-
sponses is to find the cell which displays maximum response,
localizing a camera as being within the “receptive field” of that
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(b) Illustration of prototype place cell be-
haviour produced by comparing FEVs from a
series of frames to those at several landmark lo-
cations with an appropriate metric. The curves
shown here do not include thresholding (see
text).

Figure 2: Hypothetical (desired) responses of APCs (left), and diagram of place cell genera-
tion from image comparisons (right).

two image frames that are captured at positions P and Q, and are spaced a distance, `PQ,
apart (Fig. 2(b)). As the distance `PQ varies, the mapping should yield a smoothly varying
result. In addition, biological place cell (BPC) behaviour often displays a concave relation-
ship between firing rate and distance from the location of peak response (often, the location
of some landmark) as illustrated in Fig. 2(a) and Fig. 2(b).

One way to mimic the behaviour of BPCs within APCs is to introduce a kernel function
that maps a pair of FEVs onto a positive scalar value. We used the following mapping
between two vectors va and vb:

κχ2(va,vb) =
400

∑
j=1

va( j) · vb( j)
va( j)+ vb( j)

(1)

This maps the two FEVs onto a scalar value that takes a maximum when the two vectors
are identical. The behaviour of this kernel mapping between a fixed frame and a series
of frames from a sequence is shown in Fig. 3(a). As one moves along the horizontal axis
from left to right, vectors from each frame in a section of a video sequence are compared
against those of a reference frame (virtual visual landmark) from another sequence. The
location of the reference frame corresponds to the location in the new sequence at which one
observes the peak in the curve (around frame 690) of Fig. 3(a); this location corresponds to
the effective position of the virtual landmark, which is the field of view in front of the camera
at that (frame) location. The variability of responses is high, but it is not unlike the types of
variation found in biological place cell behaviour.

4 Creating Place Fields
The similarity function κχ2 is an important component in producing APC behaviour from
FEVs. However, regions of the APC response curve which are almost flat contain very little
information from the point of inferring the position of a stimulus that elicits some response.
In other words, regions of the curve where the gradient with respect to distance to the peak of
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Figure 3: (Left) A single APC directly obtained from the κχ2 similarity metric. (Right) How
hard-thresholding may be used to obtain a final APC tuning curve.

the curve, `, is small, convey relatively little information about the camera’s location. Other
regions of the curve show rapid change with distance from the peak. In order to synthesize
useful “tuning curves” for APCs, we need to define sub- and supra-threshold regions for each
APC that we wish to define (Fig. 3(b)).

The place cell is modelled by extracting the Frame-Encoding Vector (FEV), vri , when
the camera is at position `i from one or more reference journeys and calculating the supra-
threshold response to some frame v` acquired at location `. As ` is varied, κχ2(v`,vri)
changes accordingly. The set of supra-thresholded response curves, ri(`), is generated using:

ri(`) =U(κχ2(v`,vri)−Ti) ·κχ2(v`,vri) (2)

where U(·) represents the unit step function and Ti represents a suitable threshold. Curves
acquired by averaging responses from several journeys with respect to the same APC location
may be referred to as an APC tuning curve.

By defining APCs at regular intervals along a corridor, a simple population code for
location can be devised. In Fig. 4, the average response from each of several such APC
cell responses is plotted along the length of one corridor. These curves are produced by
setting APCs to be spaced every 4 m within the corridor, and constructing the average APC
responses. In Fig. 4, ground truth was used to register the curves for illustrative purposes.

The responses of the collection of APCs provide important information as a population
code [21]. By changing the threshold level, the support region of the APCs can be altered,
leading to greater or lesser degrees of overlap, and (see Section 5), different performance.

4.1 Location from APC Activations

Conceptually, given a series of APC responses to visual cues of a person’s location along
some journey – illustrated in Fig. 2(a) – there are two obvious ways of estimating location,
`. The first is simply to use the APC which displays maximum activation (firing rate) as a
rough indicator of where the person is. That is, given a set of activations p(ri|`), the location
of the camera that captured a particular image frame is provided by the index, i associated
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Figure 4: Responses from APCs in the RSM dataset (see Section 5). The APCs are defined
every 4 m within a corridor, using ground truth information. Once defined, these APCs
provide two different methods of localisation.

with maximizing p(ri|`). This provides a precision that is limited by the width the APCs, but
requires little more than ensuring that place cell responses are reasonably well-separated.

The second technique to infer location achieves more accurate localisation of a camera
from its captured visual data by using the joint distribution p(r|`), of APC responses, r to
infer location ` relative to some designated ground truth. We use a single index, i, to refer to
the response of a unique place cell, ri.

First, a rough location may be identified by using arg max(ri) over the index, i; then,
the responses of neighbouring APCs can be used to obtain sub-cell localisation. In order to
apply this principle, one needs sufficiently accurate estimates of p(r|`)= p(r1,r2,r3, ...,rC|`),
where rC is the total number of place cells in some region of a path. Given several active
cells that are a subset of all place cells in a location, sub-APC localisation is possible using
APC responses from previous journeys using empirical Bayes’ techniques. For example, if
three cells are active, the chain rule can be used to obtain successively refined estimates of `:

p(`|r) ∝ p(r3,r4,r5|`)p(`)

∝ p(r3|r4,r5, `)× p(r4|r5, `)× p(r5|`)× p(`) (3)

so that the responses of spatially close APCs can be used to infer sub-APC position. If the
width of an APC is set to around 2 m, localisation of the order of tens of centimetres is
plausible.

4.2 Overview of the System

In the experimental work to be discussed in the next section, a Generalized Regression Neu-
ral Network was used to provide sub-APC position estimates, obviating the need to construct
ad-hoc empirical estimators. This regression network consists of two-layers, and uses radial-
basis functions. The responses from C = 16 place cells were input to the network, and ground
truth of location within a section of corridor – up to 4 m long – used to train it as a regressor.
In all experiments, dictionary generation was performed independently of the APC responses
used in training the regression network.

An overview of the pipeline for processing the frames to generate APCs is shown in
Fig. 5. The performance of different methods will be discussed in Section 5.
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Figure 5: Overview of the training pipeline. The diagram of the neural network is merely
illustrative, and does not represent the real GRNN architecture used.

5 Experiments and Results

In order to test the APC concept, we performed a series of experiments using the publicly
available RSM dataset [23]. This dataset contains visual data of more than 3 km of indoor
journeys acquired with two devices: a hand-held Nexus 4 and a wearable Google Glass.
Corridors varied in length between 32 m and 60 m and the sequences comprise more than
120,000 frames with ground truth acquired with surveying equipment. The original resolu-
tion of the dataset is 1280×720 pixels per frame which we down-sampled to 208×117.

5.1 APC-level Localisation

The first method used to infer location – based on identifying the APC with maximum activ-
ity – was tested in several corridors of the experimental data. First, a visualization showing
the locations of APCs with maximum activation is shown in Fig. 6(a); these are indicated
on the floor plan of one of the building sections that was used to conduct the experiment.
Locations are staggered across the width of the corridor in order to visualize the individual
activations of the 8 APCs defined within this corridor. The second technique to estimate
location relies on the overlap of the responses from APCs and the use of a GRNN. Table
1 compares the two localisation techniques for different methods of descriptor generation.
A dictionary based on a single device type was used, but all the combinations of remaining
passes were submitted as queries. The neural network regressor shows better results, achiev-
ing errors as low as 2.49 m for SF-GABOR, even with the majority of the queries coming
from a different device that was not used to learn the dictionary. Very low errors were ob-
served using a single device, as may be seen in Fig. 6(b). The performance of LSD-SLAM,
when tested on the same sequences, is also reported, but tracking was lost in roughly 40%
of sequences. This is probably because LSD-SLAM performs best on sequences acquired
with global-shutter, fish-eye lenses. The RSM dataset does not use such cameras. A tracking
recovery exception catch was therefore implemented to keep LSD-SLAM running.

5.2 Sub-APC Localisation

By arranging for APC responses to be up to 4 m in width, the responses from several cells can
be used to perform accurate inference of spatial position using a single section of corridor.
The success of this technique is illustrated in Fig. 6(b). Note that average absolute errors are
very small compared to distances traversed.
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Sub-APC Localisation APC-level Localisation
Method µ|ε| (m) σ|ε| (m) Min (m) Max (m) µ|ε| (m) σ|ε| (m) Min (m) Max (m)
SIFT 3.42 2.72 0.38 6.47 4.48 5.14 0. 34 7.56
DSIFT 2.78 2.45 0.47 6.54 4.10 5.64 0.31 6.10
SF-GABOR 2.49 2.07 0.46 5.60 4.81 7.11 0.68 8.47
ST-GABOR 7.94 5.54 2.63 10.45 9.65 9.19 3.67 13.13
ST-GAUSS 3.18 2.64 0.45 7.17 3.79 5.44 0.69 8.12
LSD-SLAM(∗)

µ|ε| = 2.48 m σ|ε| = 2.37 m Min: 1.21 m Max: 3.20 m
Table 1: Absolute error evaluation when using a larger number (40) of APCs of small spatial
support (0.61 m), using arg max() to infer spatial position, in contrast to using fewer (16)
but larger APCs with substantial overlap and the regression network (sub-APC). The com-
parison with a state of the art SLAM method (LSD-SLAM) is also included.(∗) LSD-SLAM
performance is positively affected by the tracking recovery exception, which reduces the
error drift by reseting the odometry calculation and the error of the pose-graph optimisation.

5.3 Parameter Tuning

The GRNN relied on the overlap of the responses of the place cells to perform location
inference. By varying the threshold beyond which place cells are considered active, it is
possible to have very long-tailed APC responses, spanning several metres. This yields APC
behaviour that is similar to that of rate-coding in place cells observed in biology. The blue
trace on Fig. 7(a) shows an example of the average cell width in metres as the threshold on
the κχ2 comparison metric is varied. The red trace illustrates the average error, also in metres,
that is obtained from the GRNN regressor. Having low APC response overlap deprives the
network of sufficient non-zero inputs, leading to poor accuracy in position inference.

One of the key problems with using different cameras – even if they are calibrated – is
the difference in field of view of one imaging device with respect to another. A Nexus 4
smartphone and a wearable Google Glass were used to conduct experiments into the effect
of the dictionary on the localisation using the sub-APC (GRNN) approach.

A set of 10 journeys through one of the corridors of the RSM building with different
devices was taken for this experiment. Some of the journeys were included in the database,
others were used to conduct queries. The partitioning of the data was permuted, varying
the number of journeys in the database and the number of query journeys kept out of the
database. Journeys which were used for queries did not contribute to the learning of the
dictionary, which was repeated for each permutation. Fig. 7(b) shows the difference in
absolute error of Nexus and Glass queries when only passes from one device (in this case,
the Nexus) were used for the dictionary learning.

6 Conclusion

To our knowledge, there has been no reported computational architecture that reproduces
biological place cell responses in the form of tuning curves from video sequences, and there
have been no other demonstrable computational models for place cell positional encoding
that can be applied to the recorded video sequences of the form we used in this work. Fur-
thermore, competing camera-based localisation techniques such as SLAM rely on relative
object camera motion to infer structure and to then either perform odometry or to estimate
position: motion is therefore a requirement. The place cell model that we have proposed and
evaluated in this paper does not require motion at location estimation time: a single frame
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(a) Using ground truth from a sur-
veyor’s wheel, activations from
APCs are overlaid onto the floor
plan in which video data was ac-
quired. Different colours refer to
individual APCs.
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Figure 6: (Left) a visualization of APC-level localisation over a floor plan. (Right) Sub-APC
localisation results with different patch descriptor methods.
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Figure 7: Evaluation of sub-APC localisation when using different thresholds and query
devices.

yields a hypothetical location.
In conclusion, this work demonstrates that computational models of place cells can pro-

vide effective estimates of camera location without relying on tracking or construction of a
geometric model of the local environment. Such techniques, although simple, can match and
certainly complement the more sophisticated position inference approaches used in computer
vision.
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