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Abstract

3D tracking of objects and hands in an object manipulation scenario is a very interest-
ing computer vision problem with a wide variety of applications ranging from consumer
electronics to robotics and medicine. Recent advances in this research topic allow for 3D
tracking of complex scenarios involving bimanual manipulation of several rigid objects
using commodity hardware and with high accuracy. The problem with these approaches
is that they treat tracking as a search problem whose dimensionality increases with the
number of objects in the scene. This fact typically limits the number of the tracked ob-
jects and/or the processing framerate. In this paper we present a method that utilizes
simple low level motion cues for dynamically assigning computational resources to parts
of the scene where they are actually required. In a series of experiments, we show that
this simple idea improves tracking performance dramatically at a cost of only a minor
degradation of tracking accuracy.

1 Introduction
There is a very large number of real-life scenarios in which a person manipulates several
objects in the environment. Examples can be drawn from diverse origins, e.g. manual and
industrialized assembly, tool use, food preparation, surgery operation, etc. Automating the
extraction of rich and accurate 3D information regarding the state of such scenes through
computer vision techniques is an interesting problem whose solution is of fundamental im-
portance towards supporting goals such as activity recognition, inspection, surveillance, etc.

Interestingly, with the exception of rare cases such as juggling, it is usual that a person
only manipulates a few objects or tools at a time. As an example, in a pancake cooking
scenario (see Fig. 1), at each point in time the person actuates a bottle of pancake mix, a
spatula, a plate, a cooker, etc., one after the other or in small subsets. While there are several
objects that require accurate 3D tracking overall, only a few of them move at any given time.
We argue that this simple observation is very valuable as its exploitation can dramatically
improve the computational profile of 3D multi-object tracking methods.
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(a) Pouring pancake mix (b) Waiting for the mix to cook (c) Flipping the pancake

Figure 1: When making pancakes in real-life, several objects remain static for considerable
time intervals. The proposed method can very efficiently skip through these idle times with-
out sacrificing tracking accuracy. The tracked objects are the human hand, the spatula, the
pancake mix bottle, the plate and the cooker.

This work deals with the problem of tracking multiple interacting objects so as to best
utilize the limited processing resources of a computational system. Tracking multiple inter-
acting objects in 3D is a difficult task. Adding a requirement for computational efficiency
only makes the problem harder. Towards this goal, the presented work extends the state-of-
the-art method by Kyriazis and Argyros [8] by introducing a dynamic distribution of com-
putational budget among an Ensemble of Collaborative Trackers (ECT). The dynamic distri-
bution of computational budget is based on change detection techniques, which draws cues
from the RGBD input as well as from the feedback of the tracking method itself. Through
extensive experiments and comparative analyses we show that the proposed work improves
the state-of-the-art in multi-object 3D tracking by maintaining (i.e., not compromising) their
high accuracy but by doing so in fractions of the originally required computational time. For
scenarios in which every object is moving the proposed method gracefully regresses to [8].

2 Related Work
To the best of our knowledge, the exploitation of low level motion cues to speed up the 3D
tracking of multiple objects has not been addressed in the relevant literature.

With respect to 3D tracking of objects, there is a great amount of work which considers
one or a few objects at a time and there are few approaches which deal with multiple ob-
jects. All reviewed methods include a bottom-up (e.g. preprocessing) and a top-down (e.g.
fusion) component. There is variability, however, on the strength of the contribution and
the significance of each of these components in the resulting method. Many works regard
tracking a single hand in 3D. Hand-tracking methods in which the bottom-up component
is prevalent are those based on machine learning [5, 6, 15, 19, 22]. Hand-tracking meth-
ods with a stronger top-down component are founded on hypothesize-and-test optimization
[2, 9, 10, 11, 14, 17, 18]. There are also hand-tracking methods where the bottom-up and top-
down components have balanced contributions [1, 3, 20, 23]. In tracking multiple interacting
objects and/or hands there is more focus on the top-down component [7, 8, 12, 13, 16, 21].
This is an interesting fact, which we understand as follows: for the case of multiple objects
with intense interaction, a model-based approach requires generalization from simpler ob-
ject/scene models to more complex ones. This is achieved easily through intuitive top-down
design. On the negative side, the computational requirements of such methods are exponen-
tial to the number of the objects to be tracked. Bottom-up, learning-based methods are not as
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easily generalizable to complex scenes. This is because extending the scene by even one new
object requires retraining of the method from scratch. Moreover, the space of hand/object
interactions that needs to be learned becomes easily extremely large and sampling it at a
reasonable density becomes prohibitively costly, if possible at all.

The works that are most related to ours are the approaches by Kyriazis and Argyros on
top-down 3D tracking of multiple active objects from RGBD input [7, 8]. In both approaches
special attention is paid on scalability. In [7], it is assumed that the state of passive objects is
invariably determined by the motion of an active hand. Therefore, they tracked a simulation
configured over hand motion alone. This assumption effectively reduced the size of the
tracking problem. However, if the physical model is kept simple, this assumption may be
too restrictive in the nature of scenes amenable to such tracking, as acknowledged in [8].
The requirement for tracking multiple active entities in a scalable fashion is tackled in [8].
By employing a distinct tracker per object and by establishing communications among all
trackers, the problem of joint estimation of the state of all objects is achieved. Each tracker is
optimized independently, but in each independent optimization, evidence from other trackers
is also considered.

In this work, as in [8], we employ an Ensemble of Collaborating Trackers (ECT) to
allow tracking of multiple active objects. Nevertheless, in contrast to [8], each tracker has a
variable computational budget allowance. We perform change detection to assess how much
attention each of the trackers requires and distribute computational resources accordingly.
By doing so, we are able to significantly improve the state-of-the-art tracking throughput
results of [8] with negligible deterioration of accuracy.

3 Methodology
The methodological part of our contribution can be briefly described as an extra processing
node in the pipeline of [8] which it extends. Our contribution, in terms of implications and
impact, is described in Section 4.

The tracking approach in [8] regards a set of semi-independent trackers. Each tracker
is associated with a distinct object in the scene. For an object to be tracked, a separate
optimization problem is solved, one for each frame and each object. Each optimization
problem is numerically solved using a black box optimizer, i.e. a variant of the Particle
Swarm Optimization (PSO) algorithm. This algorithm treats the objective function as an
oracle and queries it on purposefully evolved “guesses” in the search space, in order to find
the optimum. The harder the problem is, the more guesses are required for adequate accuracy
to be achieved. For example, tracking the pose and the articulation of the hand amounts to
solving a 27-parameter optimization problem. This is much harder than solving for the
3D pose of a rigid object (6 parameters). ECT assigns a fixed amount of computational
resources to each tracking sub-problem which depends on this notion of complexity and
which is empirically estimated.

In this work, we quantify at run time how hard the tracking of an object should be, not
only based on its intrinsic complexity, but also based on its observed dynamics. An object
that appears static in the recent temporal window requires less resources compared to an
object whose state is more dynamic. Thus, change detection is performed on the image
space of color intensities and depth measurements of the RGBD input.

In Sec. 3.1, for the purposes of self-completeness, we provide a brief overview of how
the baseline, ECT method [8] works. In Sec. 3.2 we present the visual cues that can provide
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valuable hints on the hardness of the tracking problem. Finally, in Sec. 3.3, we show how
these cues are used to determine the computational budget of each tracker, resulting in the
proposed method, F.ECT.

3.1 Collaborative Tracking (ECT)
The tracking methodology is built on the premise of a generative model M. M has as many
degrees of freedom (DoFs) as required to fully specify the 3D pose and articulation of ev-
ery object in a scene. Here, we are considering rigid objects and articulated hands. Rigid
objects are described by their 3D shape, in the form of 3D triangular meshes, and 6 DoFs
(3D translation and 3D rotation), and are redundantly represented by 7 values (rotations are
represented by quaternions). The human hand is described by 26 DoFs and a set of triangular
meshes for the parts, and are represented by 27 values, as in [9].

M can generate rendered images from such parametrizations of scenes, as in [8]. These
images are directly comparable to RGBD input. Foreground detection in RGB can be cor-
responded to rendered silhouettes. Depth measurements can be corresponded to rendered
depth maps. By differentiating the generated data and the observations, an objective func-
tion is established, defined over the parametrization of the scene. The minimum value of
this objective function corresponds to the optimal fit of M to the observations, i.e. the best
matching scene 3D configuration.

For each tracker and each frame in time this objective function is defined as:

E(x,o, h̄,DT ) = ‖M(x, h̄,DT )−P(o, h̄)‖ , (1)

where x is a hypothesized 3D configuration of the tracked object, o is the set of observations
for the current frame, h̄ is the tracking history, DT is the state of the rest of the scene as
broadcast by the rest of the trackers and P is the process of mapping the observations to
the same feature space as the generated data (silhouettes and depth maps). The norm of
the difference in Eq. (1) is a notational abstraction, which refers to the silhouette and depth
differentiation computations of [9] (term D therein). Tracking, i.e. computing the object state
s for each frame, amounts to minimizing Eq. (1) with respect to its free parameters x:

s ∆
= argmin

x
E(x,o, h̄,DT ) . (2)

M can generate data by also incorporating knowledge from the rest of the trackers DT .
The broadcast information DT , incorporated in the computations of the current frame, cor-
responds to the estimates of all trackers in the previous frame (see one frame lag reference
in [8]). In our case, and for each tracker and frame, M incorporates all tracker information
into a single silhouette map, by computing the pixel-wise logical disjunction of all rendered
silhouettes for all trackers, and into a single depth map, by performing z-buffering over all
rendered depth maps for all trackers.

The required minimization of Eq. (2) is performed by the PSO variant described in [9].
Search is initialized in the vicinity of the solutions for the previous frame. The variant is
differentiated from the original PSO algorithm [4] in that it performs an additional step of
randomization in the finger articulation parameters of the hypotheses, during evolution. This
implies that for the case of rigid objects the PSO variant is the same as the original PSO.

The only free parameters of the described procedure are the budget allocated to PSO
for each optimization required, across all trackers and frames. In [8] these budgets were
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predetermined and always remained fixed during tracking. In this work, the main goal is the
evidence-based dynamic adjustment of these budgets.

3.2 Low Level Motion Cues
The expected complexity of tracking an object in each frame depends on whether it moves or
not. This regards the image-space vicinity of the object and incorporates low-level features,
tracking feedback and a temporal smoothness prior.

During tracking and for each object, there is a 3D state estimate held by the correspond-
ing tracker, regarding the last processed frame. The 3D estimate for the ith tracker is individ-
ually back-projected to the image plane and the 2D bounding box bi of the back-projection
is computed. Given color intensity images Ic,t and depth images Id,t , defined over time t,
the amount of motion for object i is quantified as the average pixel-wise difference inside bi,
between the current frame, at time t, and the previous frame, at time t−1:

ml,i(t) =
1

Nbi
∑
p∈bi

∥∥Il,t(p)− Il,t−1(p)
∥∥, (3)

where Nbi denotes the area of the bounding box bi. Accordingly, for each tracker i, motion
intensity in RGB images is defined as mc,i and motion amount in depth measurements is
defined as md,i.

Assuming temporal continuity, we also incorporate the tracked velocity of each object
into the computations of its motion state. For each object i and for the frame in time t, with
3D state estimates for the two previous frames si,t−1 and si,t−2, we compute the magnitude
of the velocity:

v̄i = ‖si,t−1− si,t−2‖ . (4)

In depth measurements, a value of 0 represents the lack of measurement. There are
several reasons that lead to missing measurements in structured light depth acquisition. We
are specifically interested in the sudden change of the number of missing measurements,
which usually occurs as the angle at which object surfaces are viewed is close to some
tolerance of slant. To capture such events we quantify this structured noise as follows:

ei =
1

Nbi

∥∥∥∥∥∑
p∈bi

(
Id,t (p) 6= 0

)
− ∑

p∈bi

(
Id,t−1 (p) 6= 0

)∥∥∥∥∥ . (5)

Each object i is also corresponded to a timeout value ti. This value holds the number
of frames, back in time, since object i was last classified as moving. Thresholding of the
aforementioned quantities yields the classification of the motion state for object i. More
specifically, given thresholds Tc regarding motion in color images, Td regarding motion in
depth images, Tv regarding velocity magnitude and Te regarding structured noise, each object
i is given a motion label mi, which is set to 1 if the object is classified as moving and 0
otherwise:

mi =

{
1, (mc,i > Tc)∨

(
md,i > Td

)
∨ (vi > Tv)∨ (ei > Te)∨ (ti > 0)

0, otherwise
. (6)

In special note, if mi is set to 1 due to ti > 0, alone, then ti is not reset. Timeout is
suppressed in the presence of evidence suggesting so. If the last Tg generations, computed
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Figure 2: Frames from the tracked sequences: “two hands”, “spray”, “pancakes”, “cans”.

for the tracking of object i in the previous frame, did not lead to an improvement of the state
estimate then ti is set to 0.

3.3 Dynamic Budget Distribution (F.ECT)
As described in Sec. 3.1, Particle Swarm Optimization (PSO) operates by evolving a pop-
ulation of particles. Evolution is performed in steps, called generations. In PSO, two main
phases comprise the computation of a generation. A first phase is the fitness computation
of all particles. Fitness computation is the computationally heaviest operation, as it involves
the evaluation of the objective function at the hypotheses carried within the particles. This
is a parallel step, as the evaluation of each particle is independent with respect to any other.
A lightweight step follows, where, according to the fitness evaluations, all particles “fly” to-
wards the optimal particle. The amount of total objective function invocations, which is equal
to the product of particles and generations, is the budget required by a single optimization.
If several similar optimizations are carried out, as it is the case here and in [8], generation
computations across such optimizations can be merged into wider parallel computations per-
formed on GPGPU architectures. Thus, the same number of objective function evaluations
are executed more quickly if it is the product of more particles and less generations.

Budget has the trivial minimum value of 0. Moreover, as it has also been shown in [9, 12],
a budget of 64 particles running for 64 generations suffices to track a hand, even in interaction
with another hand. No more budget should be required to track simpler structures such as
rigid objects.

Our dynamic budget allocation policy assigns a minimum budget Bmin of 64 particles
running for 4 generations to the objects that are static and a maximum budget Bmax that
never exceeds the aforementioned budget of 64 particles, 64 generations. thus, the budget
Bi, i = 1, . . . ,N for all N trackers is defined as

Bi =

{
Bmax, mi = 1
Bmin, otherwise

. (7)

4 Experiments
In order to evaluate the proposed method we conducted several experiments on real and syn-
thetic datasets. The configuration for the method thresholds described in Eq.(6) were em-
pirically identified and remain the same across all experiments (Tc=30, Td=10.6 mm, Tv=1.5
mm, Te=7% , ti=4). All real-life datasets (both standard and home-built) were acquired by
PrimeSense RGBD technology, i.e. either a Microsoft Kinect or an ASUS Xtion. All ex-
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Figure 3: (a), (b), (c), (d): ECT vs F.ECT with respect to error as a function of number of
generations for the Pancake, Cans, Two Hands and Spray datasets, respectively.

periments were run on a machine with the following specifications: CPU Intel i7-4790 CPU
Processor @ 3.60 Ghz, GPU NVidia GTX970.

4.1 Experiments on Real Sequences

In order to demonstrate the behaviour of our method relative to the nature of the tracked
scenes we performed four characteristic real-life experiments. The results are compared, in
terms of quality and execution speed, with that of ECT [8].
Two hands dataset [8]: This dataset contains two complex entities (hands) in interaction
with fifteen rigid objects. The idle time for objects is average. The tracking of such scenarios
yields a small improvement by incorporating the presented method. Indicatively, framerate
effectively doubles with a mean framerate of 4.19 (F.ECT) vs 2.06 (ECT).
Spray dataset: In this dataset, a hand manipulates a spray bottle. Thus, the scenario involves
very few objects of mixed structural complexity (both rigid and articulated) with almost no
idle time. In such scenarios there is a marginal improvement by incorporating the proposed
method. Indicatively, framerate only has a marginal 1.3x speedup (6.16 fps for F.ECT vs
4.74 fps for ECT).
Cans dataset: The Cans dataset regards the stacking and unstacking of 9 cans and 4 bot-
tles. This scenario involves a large number of objects of low structural complexity and
considerable idle time. Significant improvements can be achieved in such scenarios using
the proposed method. We get a 23x speed up (51.13fps for F.ECT) vs 2.19 fps for ECT).
Pancake dataset: This considers a real-life cooking scenario in which a pancake is prepared.
This experiment involves a medium number of objects of mixed structural complexity with
large idle intervals. In this scenario, mostly due to the idle intervals, we obtain a 15x speed
up (86.22 fps for F.ECT vs 5.62fps for ECT).
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Figure 4: (a), (b), (c), (d): ECT vs F.ECT with respect to framerate for the Pancake, Cans,
Two Hands and Spray datasets, respectively.

A video showing ECT vs F.ECT tracking for all the employed datasets is available at
http://youtu.be/nPru6PpWrK4.

4.2 Experiments on Synthetic Data

The acquisition of actual ground truth in 3D tracking scenarios of the described complex-
ity in structure and size is hard. In order to assess the accuracy of the proposed method
quantitatively, we employed synthetic data. These were constructed by rendering the already
tracked real sequences. The initial tracking was computed using ECT running with trackers
configured with 64 particles and 64 generations. Then, the solutions were rendered to form
a new dataset for which the ground truth would be known.

We performed experiments to assess the accuracy that is achieved by ECT and F.ECT
as a function of the actual budget that is assigned to a moving object. More specifically, we
considered fixed budgets of 4, 25, 40 and 64 generations, always consisting of 64 particles.
Every tracking experiment, i.e. every combination of tracking sequence and tracking method,
was repeated 5 times in order to marginalize the stochastic effect of PSO in the tracking
results. The plots in Fig. 3 show a summary of the experiment results. In all of them, it is
clear that the accuracy achieved by F.ECT is comparable to that of ECT. However, as shown
in Fig. 4, the computational performance of F.ECT is remarkably better.

Table 1 summarizes the results obtained for the synthetic counterparts of the four exper-
iments (Section 4.1) and shows the framerate and accuracy for ECT and F.ECT. As it can
be verified, depending on the characteristics of the scenario, F.ECT achieves a significant
speedup which, in certain cases is dramatic. At the same time, the tracking error is only
mildly affected.

http://youtu.be/nPru6PpWrK4
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Dataset No of Object Idle fps Error
Objects Complexity time (ECT/F.ECT) (ECT/F.ECT)

Two hands 17 Mixed Medium 2.06 / 4.19 2.99 / 3.07
Spray 2 Mixed Small 4.74 / 6.16 3.80 / 3.98
Cans 13 Low Large 2.19 / 51.13 1.55 / 1.92
Pancake 4 Low Large 5.62 / 86.22 2.30 / 3.10

Table 1: Data sets, their key characteristics and performance indicators (see text for details).

5 Discussion
In this paper, we demonstrated that simple motion cues can be indeed leveraged to improve
the computational performance of model-based 3D object tracking. The intuitive idea of
focusing computational resources to active (i.e., non static) objects results in dramatic per-
formance gains, at a minor tracking accuracy degradation. This way, tracking performance
is not any more a function of the number of the involved entities but rather a function of the
complexity of the actual motion and the interaction of objects present in the scene. Therefore,
the proposed approach makes it possible to handle accurately and at interactive framerates,
scenes and scenarios that the current state of the art can only handle in offline mode.

Current and future work focuses on extending this idea in two different ways. First, the
budget allocated to each tracker in the ensemble may become a function of the quantification
of its motion as opposed to a fixed budget that is decided based on the binary decision of
whether it moves or not. Second, the dynamic and variable allocation of resources can be
performed not only on the basis of low level motion, but also on higher level information and
cues, including activity interpretation, gaze tracking, etc.
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for computer aided design. In Proceedings of the 24th annual ACM symposium on User
interface software and technology, pages 549–558. ACM, 2011.

[23] Chi Xu and Li Cheng. Efficient hand pose estimation from a single depth image. In
Computer Vision (ICCV), 2013 IEEE International Conference on, pages 3456–3462.
IEEE, 2013.


