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Abstract

Multiset canonical correlation analysis is a powerful technique for analyzing linear
correlations among multiple representation data. However, it usually fails to discover
the intrinsic sparse reconstructive relationship and discriminating structure of multiple
data spaces in real-world applications. In this paper, by taking discriminative informa-
tion of within-class and between-class sparse reconstruction into account, we propose a
novel algorithm, called sparse discrimination based multiset canonical correlations (S-
DbMCCs), to explicitly consider both discriminative structure and sparse reconstructive
relationship in multiple representation data. In addition to maximizing between-set cu-
mulative correlations, SDbMCC minimizes within-class sparse reconstructive distances
and maximizes between-class sparse reconstructive distances, simultaneously. The fea-
sibility and effectiveness of the proposed method is verified on four popular databases
(CMU PIE, ETH-80, AR and Extended Yale-B) with promising results.

1 Introduction
Canonical correlation analysis (CCA) [7] is a powerful tool for finding the correlation be-
tween two sets of multidimensional variables. It investigates the linear correlations between
two sets of random variables and linearly projects two sets of random variables into a lower-
dimensional space in which they are maximally correlated. In order to handle supervision
information, nonlinear relationships and singularity, several extensions based on CCA have
been proposed [1, 4, 5, 6, 13, 16, 17, 18, 19, 20, 21].

However, most of CCA-based methods are not efficient for multiple (more than two) fea-
ture representations classification tasks [10]. As a generalized extension of CCA, multiset
canonical correlation analysis (MCCA) [11, 14] was proposed to solve this problem. Hou et
al. [8] proposed a multiple component analysis (MCA) by utilizing a higher-order covariance
tensor for joint feature extraction. MCA can obtain orthogonal subspaces corresponding to
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each feature set by higher-order singular value decomposition (HOSVD) [12]. Subsequently,
Yuan et al. [23] imported the generalized correlation coefficient and presented a novel multi-
set integrated canonical correlation analysis (MICCA) framework. MICCA projects multiple
high-dimensional representations in parallel into respective low-dimensional subspaces and
then fuses multiple sets of feature vectors by given strategies to form discriminative feature
vectors for recognition tasks.

In recent years, with the development of sparse representation [2, 3, 9, 22], sparse rep-
resentation based classification (SRC) has been proved to be robust for feature selection and
efficient in handling occlusion and corruption. Sparsity preserving projections (SPP) [15]
aims to preserve the sparse reconstructive relationship of the data. Extensive experiments
on some common datasets show that the projections obtained by SPP are invariant to rota-
tions, rescalings and translations of the data. Motivated by recent progress in correlation
analysis and sparse representation, in this paper, we propose a novel algorithm, called s-
parse discrimination based multiset canonical correlations (SDbMCCs). Some aspects of
the proposed SDbMCC method are worth being highlighted: 1) SDbMCC explicitly con-
siders both discriminative structure and sparse reconstructive relationship in multiple rep-
resentation data; 2) By taking the discriminative information into account, SDbMCC can
minimize within-class sparse reconstructive distances and maximize between-class sparse
reconstructive distances, simultaneously; 3) The extracted features by SDbMCC are proven
to be more effective and robust to occlusion and corruption. The proposed algorithm has
been compared with state-of-the-art methods on four popular databases (PIE, ETH-80, AR
and Extended Yale-B) to demonstrate the superior performances.

2 Sparse discrimination based multiset canonical
correlations

2.1 Motivation
This work is motivated by the following three aspects: first of all, as we mentioned before,
MCCA is efficient for multiple feature representations classification tasks, but it only con-
siders the cumulative correlation information and ignores the intrinsic sparse reconstructive
relationship and discriminating structure in multiple representation data. Secondly, SR-based
methods have been proved to be invariant to rotations, rescalings and translations of the da-
ta. Therefore, it can significantly improve the model’s robustness to various noise. Finally,
traditional SR-based methods are essentially unsupervised. In this paper, we take the dis-
criminative information into account which can minimize within-class sparse reconstructive
residual and maximize between-class sparse reconstructive residual, simultaneously. As a
result, it can significantly improve the discriminative ability of the extracted low dimension-
al features. A natural question is whether we can introduce this kind of sparse reconstructive
relationship and discriminating information into MCCA to improve its performance for joint
feature extraction. In this paper, we give a positive answer to this question.

2.2 Construct within-class and between-class scatters
In this paper, we characterize the within-class and between-class scatters, i.e., minimizing
the average within-class distance and maximizing the average between-class distance, simul-
taneously.
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Given m feature sets {X (i) = [x(i)1 ,x(i)2 , · · · ,x(i)n ] ∈ ℜdi×n}m
i=1 extracted from n samples of

c classes. Let Φ : ℜn → ℜn be the characteristic function that selects the coefficients of s(i)j

associated with the same class of the sample x(i)j , where s(i)j is the sparse weight vector of

x(i)j as in SPP. For s(i)j ∈ ℜn, with the assumption that x(i)j belongs to the kth class, Φ(s(i)j ) is a

vector whose only nonzero entries are the entries in s(i)j that are associated with class k. For

each feature set X (i), after the projections of {x(i)1 ,x(i)2 , · · · ,x(i)n } onto the projection axis α(i),
we can get the within-class scatter defined by

J(i)w =
n

∑
i=1

∥ α(i)T x(i)j −α(i)T X (i)Φ(s(i)j ) ∥2

=∥ α(i)T X (i)−α(i)T X (i)Φ(S(i)) ∥2

= α(i)T X (i)S(i)Φ X (i)T α(i)

(1)

where S(i) = [s(i)1 ,s(i)2 , · · · ,s(i)n ] and S(i)Φ = [I−Φ(S(i))] · [I−Φ(S(i))]T . Then we can construct
the total within-class scatter for all m feature sets as follows:

Jw =
m

∑
i=1

J(i)w =
m

∑
i=1

α(i)T X (i)S(i)Φ X (i)T α(i) (2)

Obviously, minimizing the total within-class scatter Jw can lead to a better sparse reconstruc-
tive relationship of the samples belonging to the same class.

Similarly to the within-class scatter, let Ψ : ℜn → ℜn be the characteristic function that
selects the coefficients of s(i)j associated with the different classes of the sample x(i)j . We can
construct the total between-class scatter for all m feature sets as follows:

Jb =
m

∑
i=1

J(i)b =
m

∑
i=1

α(i)T X (i)S(i)Ψ X (i)T α(i) (3)

where S(i)Ψ = [I −Ψ(S(i))] · [I −Ψ(S(i))]T . Maximizing the total between-class scatter can
significantly enhance the discriminative capability.

2.3 Model of SDbMCC
By considering both discriminative and sparse reconstructive relationship in multiple repre-
sentation data, we tend to minimize the total within-class sample distance and maximize the
total between-class sample distance in the low-dimensional embedding subspace, as well as
maximizing the correlations. Combining with the original MCCA objective function, we can
construct the model of SDbMCC as follows:

maxJ(α) = Σm
i=1Σm

j=1α(i)T Si jα( j)− τ[ηJw − (1−η)Jb]

s.t. α(i)T Siiα(i) = 1, i = 1,2, · · · ,m.
(4)

where αT = [α(1)T ,α(2)T , · · · ,α(m)T ], Sii is the within-set covariance matrix of feature set
X (i), and Si j is the between-set covariance matrix between feature sets X (i) and X ( j). Be-
cause the ratio between within-class and between-class sparse representation weights suffers
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from a variety of noises, we further hope that the tradeoff between between-class scatters and
within-class scatters, as well as the tradeoff between correlations and the sparse reconstruc-
tive relationship, can be tuned. Therefore, we construct the corresponding regularizations
with two tradeoff parameters τ and η . It is generally difficult to obtain exact solutions by
solving above optimization problem. Thus, we couple the constraints to obtain a relaxed
version with a single constraint as

maxJ(α) = Σm
i=1Σm

j=1α(i)T Si jα( j)− τ[ηJw − (1−η)Jb]

s.t. Σm
i=1α(i)T Siiα(i) = 1.

(5)

By utilizing Lagrange multiplier to solve the optimization problem in Eq. (5), we can obtain
the following equation:

S̃11 S12 · · · S1m

S21 S̃22 · · · S2m
...

...
. . .

...
Sm1 Sm2 · · · S̃mm




α(1)

α(2)

...
α(m)



= λ


S11

S22
. . .

Smm




α(1)

α(2)

...
α(m)


(6)

where λ is the Lagrange multiplier and {S̃ii = Sii − τ ·X (i)[ηS(i)Φ − (1−η)S(i)Ψ ]X (i)T}m
i=1. So

the solutions of Eq. (5) are the eigenvectors of the generalized eigenvalue problem in Eq. (6)
corresponding to the top d largest eigenvalues, where d denotes the number of the projection
axes.

3 Experiments

In order to evaluate the proposed method, we compared the performance of the proposed
method with several state-of-the-art methods, including MCCA, MCA and MICCA, on four
widely used benchmark datasets in both face and object classification tasks, i.e., AR, CMU
PIE, Extended Yale-B and ETH-80. The statistics of each data set are briefly listed in Table
1. In this paper, the original images were considered as the first set of features. Since or-
thonormal wavelet transforms can keep the important information of original images, and the
low-frequency sub-images include more shape information in contrast with high-frequency
sub-images, we performed Daubechies and Coiflets orthonormal wavelet transforms to ob-
tain the second and the third sets of low-frequency sub-images. To enhance the robustness
and avoid the singularity problem in the transformed spaces, we applied the K-L transform
to reduce the dimensions of the three feature sets to d1 = d2 = d3 corresponding to more
than 90% of data energy, respectively. In each experiments, the regularization parameter
τ was selected from {10−4,10−3, · · · ,105} and η was selected from {0.1,0.2, · · · ,1}. Ten
independent tests were performed to get the average recognition rates and the NN classifier
with cosine distance measure was employed for recognition.
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Dataset Yale-B AR PIE ETH-80
Number of classes (c) 38 120 68 8
Number per Class 64 26 49 410
Feature Dimensionality 70 150 150 150

Table 1: Brief description of the data sets for classification.

3.1 Face recognition
In order to verify the effectiveness of SDbMCC in face recognition, three experiments on the
Extended Yale-B, AR and CMU PIE face datasets were carried out. In the experiment on the
Yale-B dataset, N = {16,24,32} images per individual were randomly chosen for training,
while the remaining {64−N} images were used for testing. And the numbers of train-
ing images per individual corresponding to the AR and PIE datasets were N = {7,10,13}
and N = {5,10,15}, respectively. Table 2, Table 3 and Table 4 show the maximal average
recognition accuracies (%) across ten runs of each method together with their corresponding
standard deviations and dimensions on the Yale-B, AR and PIE datasets, respectively. Fig. 1
reveals the recognition rates of each method versus the variation of the dimension on all four
datasets.

Method 16 Train 24 Train 32 Train
MCCA 85.0±0.8(70) 88.0±1.0(70) 89.5±0.9(70)
MCA 40.1±4.1(70) 43.3±3.6(70) 49.1±1.7(70)
MICCA 82.3±1.9(70) 86.9±1.1(70) 88.8±1.0(70)
SDbMCC 89.7±0.9(59) 93.1±0.5(70) 94.8±0.6(61)

Table 2: Recognition accuracies (%) on the Yale-B database.

Method 7 Train 10 Train 13 Train
MCCA 78.8±1.0(150) 84.4±0.7(149) 88.5±0.8(148)
MCA 30.5±1.2(148) 36.6±1.5(150) 42.7±1.7(148)
MICCA 62.9±1.0(150) 73.1±0.6(150) 79.0±1.5(150)
SDbMCC 86.4±1.1(82) 92.0±0.6(79) 95.0±0.5(81)

Table 3: Recognition accuracies (%) on the AR database.

Method 5 Train 10 Train 15 Train
MCCA 91.8±0.9(116) 95.5±0.4(129) 96.8±0.4(141)
MCA 50.9±2.2(150) 68.1±1.5(150) 78.7±1.5(149)
MICCA 84.9±1.3(150) 93.6±0.4(149) 95.3±0.5(149)
SDbMCC 94.3±0.4(136) 97.0±0.4(97) 97.8±0.2(64)

Table 4: Recognition accuracies (%) on the PIE database.

From Table 2, Table 3 and Table 4, we can see three main points. Firstly, SDbMCC out-
performed MCCA, MCA and MICCA in terms of recognition accuracy, no matter how many
training samples per individual were selected. Secondly, when obtaining the best recognition
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(a) (b)

(c) (d)

Figure 1: The recognition accuracy of MCCA, MCA, MICCA and SDbMCC with cosine
distance metric versus the dimension on (a) the Yale-B database (16 images per individual)
(b) the AR database (7 images per individual) (c) the PIE database (5 images per individual)
(d) the ETH-80 database.

accuracies, SDbMCC and MCCA always achieved comparable standard deviations which
were much smaller than those of MCA and MICCA. This suggests that SDbMCC is rela-
tively stable and robust. Thirdly, the Yale-B and AR datasets contain more occlusion and
corruption (glasses and scarves) than PIE whose images are only under various different
poses, illumination conditions and facial expressions. By compare the recognition accura-
cies in Table 2, Table 3 and Table 4, we can discover that SDbMCC reflect more superiority
in contrast with the other methods when the datasets contain more occlusion and corruption,
which demonstrates that SDbMCC is much more robust to noise.

From Fig. 1(a), Fig. 1(b) and Fig. 1(c), we can see that SDbMCC still outperformed
MCCA, MCA and MICCA in terms of recognition accuracy versus the variation of dimen-
sion. This indicates that the SDbMCC algorithm is very suitable and robust for joint feature
extraction in the face recognition task.

3.2 Object recognition

The ETH-80 object database consists of 8 different categories and each category has 10 ob-
jects which consist of 41 images, respectively. In this experiment, three objects per category
were randomly chosen for training, while the remaining seven objects were used for testing.
Therefore, the total number of training samples was 8×3×41 = 984, and the total number
of testing samples was 8× 7× 41 = 2296. Table 5 shows the maximal average recognition
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Method MCCA MCA MICCA SDbMCC
Accuracy 65.6±2.7 64.7±4.1 49.9±2.5 70.2±2.4
Dimension 41 70 149 150

Table 5: Recognition accuracies (%) on the ETH-80 database.

accuracies (%) across ten runs of each method together with their corresponding standard
deviations and dimensions on the ETH-80 dataset.

Table 5 and Fig. 1(d) demonstrate that SDbMCC outperforms MCCA, MCA and MIC-
CA in terms of recognition accuracy in object category recognition task. The recognition rate
of SDbMCC exceeded those of MCCA 4.6%, MCA 5.5% and MICCA 20.3%, respectively.

3.3 Parameters selection
Our model has two regularization parameters η and τ . Firstly, we can restrict η ∈ [0,1]
without strain, and we traversed it from {0.1,0.2, · · · ,1} in our experiments. Secondly,
τ is a tradeoff between correlation and sparse reconstructive relationship, and it was un-
clear how to determine the optimal parameters at first. Thus, we set a wide range for it as
{10−4,10−3, · · · ,105} in all experiments.

In this section, we evaluate how SDbMCC performs with different parameter values. For
this test, we adopted the AR (10 training samples per individual) and ETH-80 datasets on
10× 10 = 100 pairwise parameter combinations. Fig. 2 shows the maximal recognition
accuracy with different η and τ . We can see that the performance of our model has some big
fluctuations with respect to η and τ . And setting η ∈ [0.7,1] and τ ∈ {10−3,10−2} for a real
world application may be a good choice.

(a) (b)

Figure 2: The recognition accuracy of SDbMCC with cosine distance metric versus the
parameters τ and η on the (a) the AR database (10 images per individual) (b) the ETH-80
database.

4 Conclusions
In this paper, we have developed a new technique for joint dimensionality reduction or sub-
space learning of high dimensional data, called sparse discrimination based multiset canon-
ical correlations (SDbMCCs). As we can see, SDbMCC has more discriminating abilities
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than the MCCA based methods in hand. On the other hand, SDbMCC can minimize within-
class sparse reconstructive residual and maximize between-class sparse reconstructive resid-
ual simultaneously. Therefore, SDbMCCs is more robust to noise, occlusion and corruption.
The proposed method has been evaluated on multiple recognition tasks with several popular
databases. The experimental results demonstrate that our algorithm facilitates the effective
learning of multiset feature fusion and exhibits impressive classification accuracy.

Our model is based on the assumption that the sparse reconstructive relationship of
the data in the original high-dimensional space will be preserved in the embedding low-
dimensional space. But due to the noise or somehow causes, this assumption may not always
set up. Especially in multiple feature representations classification tasks, the characteristics
of different feature sets may differ widely with each other. Therefore, it is very worthwhile
to build a more robust model to deal with this problem. We are currently exploring these
problems both in theory and practice.
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