
Sparse Discrimination based Multiset Canonical Correlation Analysis for Multi-Feature Fusion and
Recognition

Hongkun Ji
jihongkunnust@126.com

Xiaobo Shen
njust.shenxiaobo@gmail.com

Quansen Sun
qssun@126.com

Zexuan Ji
jizexuan840820@hotmail.com

School of Computer Science and Engineering
Nanjing University of Science and Technology
Nanjing 210094, China

Canonical correlation analysis (CCA) [3] is a powerful tool for finding
the correlation between two sets of multidimensional variables. It inves-
tigates the linear correlations between two sets of random variables and
linearly projects two sets of random variables into a lower-dimensional
space in which they are maximally correlated. However, most of CCA-
based methods are not efficient for multiple (more than two) feature rep-
resentations classification tasks [5]. As a generalized extension of CCA,
multiset canonical correlation analysis (MCCA) [6, 7] was proposed to
solve this problem. In recent years, with the development of sparse rep-
resentation [1, 2, 4, 9], sparse representation based classification (SRC)
has been proved to be robust for feature selection and efficient in handling
occlusion and corruption. Sparsity preserving projections (SPP) [8] aim-
s to preserve the sparse reconstructive relationship of the data. Extensive
experiments on some common datasets show that the projections obtained
by SPP are invariant to rotations, rescalings and translations of the data.

However, MCCA usually fails to discover the intrinsic sparse recon-
structive relationship and discriminating structure of multiple data spaces
in real-world applications. In this paper, by taking discriminative infor-
mation of within-class and between-class sparse reconstruction into ac-
count, we propose a novel algorithm, called sparse discrimination based
multiset canonical correlations (SDbMCCs), to explicitly consider both
discriminative structure and sparse reconstructive relationship in multiple
representation data. In addition to maximizing between-set cumulative
correlations, SDbMCC minimizes within-class sparse reconstructive dis-
tances and maximizes between-class sparse reconstructive distances, si-
multaneously. The feasibility and effectiveness of the proposed method is
verified on four popular databases (CMU PIE, ETH-80, AR and Extended
Yale-B) with promising results.

We characterize the within-class and between-class scatters, i.e., min-
imizing the average within-class distance and maximizing the average
between-class distance, simultaneously. Given m feature sets {X (i) =

[x(i)1 ,x(i)2 , · · · ,x(i)n ] ∈ ℜdi×n}m
i=1 extracted from n samples of c classes. Let

Φ : ℜn → ℜn be the characteristic function that selects the coefficients
of s(i)j associated with the same class of the sample x(i)j , where s(i)j is the

sparse weight vector of x(i)j as in SPP. For s(i)j ∈ ℜn, with the assumption

that x(i)j belongs to the kth class, Φ(s(i)j ) is a vector whose only nonzero

entries are the entries in s(i)j that are associated with class k. For each

feature set X (i), after the projections of {x(i)1 ,x(i)2 , · · · ,x(i)n } onto the pro-
jection axis α(i), we can get the within-class scatter defined by

J(i)w =
n

∑
i=1

∥ α(i)T x(i)j −α(i)T X (i)Φ(s(i)j ) ∥2

=∥ α(i)T X (i)−α(i)T X (i)Φ(S(i)) ∥2

= α(i)T X (i)S(i)Φ X (i)T α(i)

(1)

where S(i) = [s(i)1 ,s(i)2 , · · · ,s(i)n ] and S(i)Φ = [I − Φ(S(i))] · [I − Φ(S(i))]T .
Then we can construct the total within-class scatter for all m feature sets
as follows:

Jw =
m

∑
i=1

J(i)w =
m

∑
i=1

α(i)T X (i)S(i)Φ X (i)T α(i) (2)

Obviously, minimizing the total within-class scatter Jw can lead to a better
sparse reconstructive relationship of the samples belonging to the same
class.

Similarly to the within-class scatter, let Ψ : ℜn → ℜn be the char-
acteristic function that selects the coefficients of s(i)j associated with the

different classes of the sample x(i)j . We can construct the total between-
class scatter for all m feature sets as follows:

Jb =
m

∑
i=1

J(i)b =
m

∑
i=1

α(i)T X (i)S(i)Ψ X (i)T α(i) (3)

where S(i)Ψ = [I −Ψ(S(i))] · [I −Ψ(S(i))]T . Maximizing the total between-
class scatter can significantly enhance the discriminative capability.

By considering both discriminative and sparse reconstructive rela-
tionship in multiple representation data, we tend to minimize the total
within-class sample distance and maximize the total between-class sam-
ple distance in the low-dimensional embedding subspace, as well as max-
imizing the correlations. Combining with the original MCCA objective
function, we can construct the model of SDbMCC as follows:

maxJ(α) = Σm
i=1Σm

j=1α(i)T Si jα( j)− τ[ηJw − (1−η)Jb]

s.t. Σm
i=1α(i)T Siiα(i) = 1.

(4)

where αT = [α(1)T ,α(2)T , · · · ,α(m)T ], Sii is the within-set covariance ma-
trix of feature set X (i), and Si j is the between-set covariance matrix be-
tween feature sets X (i) and X ( j). Because the ratio between within-class
and between-class sparse representation weights suffers from a variety of
noises, we further hope that the tradeoff between between-class scatters
and within-class scatters, as well as the tradeoff between correlations and
the sparse reconstructive relationship, can be tuned. Therefore, we con-
struct the corresponding regularizations with two tradeoff parameters τ
and η . By utilizing Lagrange multiplier, we can solve the optimization
problem in Eq. (4).
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