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Abstract

Identifying neuroimaging biomarkers of Alzheimer’s disease (AD) is of great im-
portance for diagnosis and prognosis of the disease. In this study, we develop a novel
nonlinear metric learning method to improve biomarker identification for Alzheimer’s
disease and its early stage Mild Cognitive Impairment (MCI). Formulated under a con-
strained optimization framework, the proposed method learns a smooth nonlinear feature
space transformation that pulls the samples of the same class closer to each other while
pushing different classes further away. The thin-plate spline (TPS) is chosen as the geo-
metric model due to its remarkable versatility and representation power in accounting for
sophisticated deformations. In addition, a multi-resolution patch-based feature selection
strategy is proposed to extract both cross-sectional and longitudinal features from MR
brain images. Using the ADNI dataset, we evaluate the effectiveness of the proposed
metric learning and feature extraction strategies and demonstrate the improvements over
the state-of-the-art solutions within the same category.

1 Introduction

Alzheimer’s disease (AD) and its early stage, mild cognitive impairment (MCI), affect more
than 35 million people worldwide [1]. Identifying reliable biomarkers to characterize differ-
ent stages of AD would potentially provide objective and early measures for diagnosis and
treatments of this disease. In the past two decades or so, neuroimaging modalities including
Magnetic Resonance Imaging (MRI) have emerged as a positive predictive component and
become more and more commonly used in this pursuit.
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The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [17] provides reliable clinical
data including structural and functional MR imaging to support the research on interven-
tion, prevention and treatments of AD. Since the inception of ADNI in 2004, a significant
amount of research effort have been conducted on supplementing imaging data by combin-
ing it with cerebrospinal fluid (CSF) biomarker levels and genetics information, as well as
utilizing a variety of newer classification methods to differentiate patient groups. However,
insufficient attention has been given to rationally selecting appropriate metrics (equivalent
to transforming the feature space) from the training data that could maximize the power of
various classifiers.

Metric learning (ML), the procedure aiming to learn a good distance metric tuned to a
particular task with certain side information, would certainly offer a remedy in this regard.
The learned metric, tailored to the training input, can significantly improve the performance
of many metric-based algorithms, such as kNN, k-means, and even SVMs [37], in various
classification, clustering and retrieval tasks [3, 38].

Learning a metric from the training input is equivalent to learn a feature transforma-
tion [3]. Depending on the feature space transformation to be sought, metric learning can
be divided into linear and nonlinear groups [38]. Linear models commonly try to estimate
a “best” affine transformation to deform the feature space, such that the resulted Maha-
lanobis distance would very well agree with the supervisory information brought by training
samples. Many early works have focused on linear methods because they are easy to use,
convenient to optimize and less prone to overfitting [3]. However, when handling data with
nonlinear structures, linear models show inherently limited expressive power and separa-
tion capability. Nonlinear models are usually designed through kernelization or localization
of certain linear models. The idea of kernelization [20, 31] is to embed the input features
into a higher dimensional space, with a goal that the data would be more linearly separa-
ble under the new space. While kernelization may dramatically improve the performance
of linear methods for many highly nonlinear problems, solutions in this group are prone to
overfitting [3], and their utilization is inherently limited by the sizes of the kernel matri-
ces [13]. Localization approaches focus on combining multiple local metrics, which were
learned based on either local neighborhoods or class memberships. The granularity levels of
the neighborhoods vary from per-partition [16, 25], per-class [35] to per-exemplar [24, 33].
Although the multi-metric strategies are usually more powerful in accommodating nonlinear
structures, generalizing these methods to fit other classifiers than kNN is not trivial. To avoid
non-symmetric metrics, extra cares are commonly needed to ensure the smoothness of the
transformed feature space. In addition, estimating geodesic distances and group statistics on
such metric manifolds are often computationally expensive.

Other than metric learning, feature extraction and selection from the ADNI database is
also in great need of further exploration. For structural features extracted from brain MRIs,
cortical thickness [19], hippocampal volume/shape [5, 23] and voxel tissue probability maps
[9, 21] across the whole brain or around certain regions of interest (ROI), are among the pop-
ular choices. Most of them are either cross-sectional features obtained at one point in time,
or “static” longitudinal volumetric information acquired at two or multiple time points but
only through structural segmentation. In part due to the unavailability of deformation data
under ADNI, “dynamic” longitudinal information such as the atrophy over time at various
gray matter (GM) areas, which is a major hallmark in the progression of AD, has not been
fully utilized in the literature.

In this paper, we propose to improve the quality of AD neuroimage biomarker identifi-
cation along two directions: 1) feature space transformation through a novel nonlinear ML
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technique; 2) extraction and integration of dynamic longitudinal atrophy features into the
classification framework. The proposed ML solution is a direct generalization of linear ML
through the application of a deformable geometric model – the thin-plate spline (TPS) - to
transform the feature space. TPS is chosen due to its remarkable versatility and represen-
tation power in accounting for high-order deformations. Unlike the multi-metric solutions,
our proposed nonlinear ML method seeks a smooth global feature transformation, which
can be applied as a preprocessing step for a variety of classifiers. Toward the integration of
longitudinal information, we propose a multi-resolution patch selection strategy, with both
cross-sectional (baseline) and longitudinal atrophy features extracted from MR brain images.

The rest of the paper is organized as follows. Section 2 introduces a classic linear ML
model [36], which is used as the platform for our proposed TPS-based nonlinear ML model
presented in Section 3. Section 4 describes the proposed multi-resolution patch extraction
and selection procedure. In Section 5, we present experiments and results to evaluate the
components of our model. Finally, section 6 concludes this paper.

2 A Classic Linear ML Model: MMC
In this paper, a pioneer Mahalanobis ML for clustering method (MMC) proposed by Xing et
al. [36] will be used as the platform to formulate our nonlinear TPS solution. Therefore, we
briefly review the concept of MMC here.

Given a set of training data instances X = {xi| xi ∈ Rm, i = 1, · · · ,n}, where n is the
number of training samples, and m is the number of features that a data instance has, the
goal of ML is to learn a “better” metric function D : X ×X → R to the problem of interest
with the information carried by the training samples. Mahalanobis metric is one of the most
popular metric functions used in existing ML algorithms [11, 15, 16, 18, 27, 34], which
is defined by DM(xi,x j) =

√
(xi−x j)T M(xi−x j). The control parameter M ∈ Rm×m is a

square matrix. In order to qualify as a valid (pseudo-)metric, M has to be positive semi-
definite (PSD), denoted as M � 0. As a PSD matrix, M can be decomposed as M = LT L,
where L ∈ Rk×m and k is the rank of M. Then, DM(xi,x j) can be rewritten as follows:

DM(xi,x j) =
√

(xi−x j)T LT L(xi−x j) =
√
(Lxi−Lx j)T (Lxi−Lx j). (1)

Eqn. (1) explains why learning a Mahalanobis metric is equivalent to learning a lin-
ear transformation function and computing the Euclidean distance over the transformed
data domain. With the side information embedded in the class-equivalent constraints P =
{(xi,x j)| xi and x j belong to the same class} and class-nonequivalent constraintsN = {(xi,x j)
| xi and x j belong to different classes}, MMC formulated the problem of ML into the follow-
ing convex programming problem:

min
M

J(M) = ∑
xi,x j∈P

D2
M(xi,x j) s.t. M � 0, ∑

xi,x j∈N
D2

M(xi,x j)≥ 1. (2)

The objective function aims at improving the subsequent classification for the data via
minimizing the sum of distances between similar training data, while keeping the sum of
distances between dissimilar ones large. Note that, besides the PSD constraint on M, an
additional constraint on the training samples inN is needed to avoid trivial solutions for the
optimization. To solve this optimization problem, the projected gradient descent method is
used, which projects the estimated matrix back to the PSD group whenever it is necessary.
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3 Metric Learning through TPS (ML-TPS)

Instead of using a linear transformation L as in MMC, we choose to deform the feature space
through a radial basis function – thin-plate spline (TPS). The TPS is the high-dimensional
analog of the cubic spline in one dimension, and was first used in surface reconstruction re-
search as an interpolation tool. In m dimensions, the idea of TPS is to choose a function f (x)
that exactly goes through the data points (xi,yi) (i.e., yi = f (xi)) and minimizes the bending
energy, E[ f ] =

∫
Rm |D2 f |2dX , where D2 f is the matrix of second-order partial derivatives of

f , and dX = dx1...dxm, where x j are the components of x. The Euler-Lagrange equation for
E[ f ], which specifies the necessary condition the minimizing function should satisfy, is the
biharmonic equation

∆
2 f =

m

∑
k=1

m

∑
l=1

f 2
xkxl

= 0. (3)

The classic solution for Eqn. (3) has a representation in terms of a radial basis function,

f (x) =
n

∑
i=1

wiG(||x−xi||)+bT x+ c, (4)

where ||.|| denotes the Euclidean norm and {wi} are a set of weights for the nonlinear
part; b and c are the weights for the linear part. The corresponding radial distance kernel of
TPS, which is the Green’s function to solve Eqn. (3), is as follows:

G(x,xk) = G(||x−xk||) ∝

{
||x−xk||2ln||x−xk||, if m is even positive;

||x−xk||, otherwise.
(5)

For more details about TPS, we refer readers to [8, 32].
The TPS transformation for data interpolations, as specified in Eqn. (4), can be employed

as the geometric model to deform the feature spaces to achieve nonlinear metric learning.
Such transformation would ensure certain desired smoothness as it minimizes the bending
energy E[ f ] of the transformation. Within the ML setting, let x be one of the training samples
in the original feature space X of m dimensions, and f (x) be the transformed destination of
x, which is still of m dimensions. Through a straightforward mathematical manipulations
[4], we can get f (x) in matrix format:

f (x) = x ·B+

G(x,x1)
· · ·

G(x,xp)

 ·W = x ·B+ ~G ·W, (6)

where B (size m×m) is the linear transformation matrix, corresponding to LT in Mahalabonis
metric, and W is the weight matrix for the nonlinear parts. xp are the anchor points used to
compute the TPS kernel. Usually, we can use all the training data points as the anchor
points. However, in practice, p anchor points are extracted via different methods to describe
the whole input space under the consideration of computational cost. In this study, k-medoids
method is adopted, similar as in [33].

The goal of our ML solution is still pulling the similar subjects closer while pushing
dissimilar subjects apart, directly through a TPS nonlinear transformation f as described in
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Eqn. (6). This can be achieved through the following constrained optimization:

min
B,W

J = ∑
xi,x j∈P

‖ f (xi)− f (x j)‖2 +λ‖W‖2
F

s.t. ∑
xi,x j∈N

‖ f (xi)− f (x j)‖2 ≥ 1;

p

∑
i=1

W k
i = 0,

p

∑
i=1

W k
i xk

i = 0, ∀k = 1 . . .m.

(7)

Compared with MMC, another component ‖W‖2
F , the squared Frobenius norm of W , is

added to the objective function as a regularizer to prevent overfitting. λ is the weighting
factor to control the importance of two components. Similar as in MMC, the nonequivalent
constraint ∑xi,x j∈N ‖ f (xi)− f (x j)‖2 ≥ 1 is to impose a scaling control to avoid trivial solu-
tions. The other two equivalent constraints with respect to W is to ensure that the elastic part
of the transformation is zero at infinity [26]. W k is the kth column of W , and xk is the kth
component of x.

Due to the nonlinearity of TPS, it is difficult to analytically solve this nonlinear con-
strained problem. Alternatively, we can use a gradient based constrained optimization solver
1 to get a local minimum for Eqn. (7) . The complexity of our ML-TPS model is dominated
by the computation of the TPS kernel, which is O(p∗n2), as well as the rate of convergence
of the chosen gradient based optimizer. n is the number of training samples, and p is the
number of anchor points.

4 Neuroimage Data and Feature Extraction
The neuroimage data used in this work were obtained from the ADNI database [17]. We
consider only the subjects for whom the baseline (M0) visits and 12-month follow-up (M12)
T1-weighted MRIs, together with their MIDAS Whole Brain Masks, are all available. As a
result, 338 subjects were selected: 94 patients with AD, 121 with MCI and 123 normal con-
trols (NC). More detailed information, including the demographics and clinical evaluations
of the subjects, is available in the supplementary material.

Recently, patch-level neuroimage features extraction and fusion [22, 30] have been used
in producing excellent performance for AD/MCI/NC classifications. The features utilized
in their work are cross-sectional, extracted from the baseline MRIs and Positron emission
tomography images (PETs). In this paper, we propose a multi-resolution patch extraction
strategy with longitudinal brain atrophy, which is one of the pathological hallmarks of AD,
as an addition information source. Fig. 1 illustrates an overview of the schematic diagram of
our proposed framework, which consists of two main steps. The first step is the extraction
of class-discriminative patches from both baseline and longitudinal MRIs; the second step is
a wrapper feature selection [12] to select a most discriminative subset from the patch pools.

4.1 Patch Extraction
To facilitate the ensuing patch-level operations, the T1-weighted MRIs (at both M0 and M12)
were first normalized into an International Consortium for Brain Mapping template through
Statistical Parametric Mapping [10], with the dimensions reduced to 79× 79× 95 and the

1We use a SQP based constrained optimizer “fmincon” in Matlab Optimization Toolbox.
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Figure 1: Flowchart of the proposed two-step patch based feature extraction and selection
strategy.

voxel sizes to 2×2×2 mm3. Then, each baseline M0-MRI was segmented into three brain
tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). As GM is
more related to AD and MCI pathologies than WM and CSF [22], we choose the spatially
normalized GM tissue densities from the baseline MRIs as the cross-sectional information
source in our work.

With the GM segmentation in place, we adopt a patch extraction procedure similar to
that in [22] to generate our baseline features. A voxel-wise t-test is first performed based on
the group labels, i.e., AD vs. NC and MCI vs. NC. Voxels with statistically significant group
difference (with the p-value smaller than 0.05) are identified as the seeds for patch extraction.
The mean p values in the seed voxels’ enclosing patches of size w×w×w are then used to
sort the patch seeds. Based on their ascending order, we select class-discriminative patches in
a greedy manner with the condition that no candidate patch pair should have more than 50%
overlapping volume. Unlike [22] where patches were extracted with a single size (i.e., w= 11
of voxels sized 4× 4× 4 mm3), we adopt a multi-resolution strategy with three different
patch sizes: w = 11,17,23, aiming to capture more useful information at different scales for
AD/MCI diagnosis. Finally, after three rounds of patch selection with different w, we obtain
a set of 3D local patches at three levels of resolutions. The corresponding patch-wise average
GM densities, denoted as PGM = {P1

GM, · · · ,Pk
GM, · · · ,PK1

GM}, make a cross-sectional feature
vector, where K1 is the total number of legitimate patches.

Our longitudinal features are obtained based on the estimated voxel deformations match-
ing the baseline and follow-up MRIs for each subject. A diffeomorphic registration method
provided via ANTs package [2] is utilized to generate the deformation vector fields. To
minimize the effect of the soft-tissue shifts outside the brains, a dilated MIDAS Whole Brain
Mask for each subject is used to specify the registration area for ANTs. We then calculate the
magnitude (or length) of the deformation vector at each voxel, and a 3D scalar field of defor-
mation magnitudes (DM) is obtained. Based on the DM fields, which show the longitudinal
atrophy, we conduct the same multi-resolution patch extraction as for the cross-sectional GM
features, resulting in a set of 3D local patches at three levels of resolutions along with the
local average DM of each patch, denoted as PDM = {P1

DM, · · · ,Pk
DM, · · · ,PK2

DM}.

4.2 Wrapper Feature Selection
In our experiments, the above patch extraction steps return more than 1000 discriminative
patches for GM and DM each. To reduce the dimensionality of the feature vectors and avoid
overfitting from redundant information, we propose to conduct a wrapper feature selection

Citation
Citation
{Liu, Zhang, and Shen} 2014

Citation
Citation
{Liu, Zhang, and Shen} 2014

Citation
Citation
{Liu, Zhang, and Shen} 2014

Citation
Citation
{Avants, Tustison, and Song} 2009



SHI, CHEN, HOBBS, SMITH, LIU: NONLINEAR METRIC LEARNING 7

[12] with a greedy forward searching from the extracted GM and DM patch pools. Starting
from an empty set, the greedy-forward wrapper method iteratively adds a new patch each
time that would lead to the largest improvement in classification on test dataset, until the
classification performance over the current set starts to degrade. While the wrapper feature
selection does not limit the choice of the wrapped classifier, they have to be chosen consis-
tently to work well. Since our proposed nonlinear metric learning model is under the nearest
neighbor paradigm, we choose kNN (with k = 1) as the wrapped classifier, which also very
well reflects the intrinsic structures of the data samples. The wrapper feature selections are
conducted from the pools of PGM , PDM and their union, resulting in three different types of
features: “GM only”, “DM only”, and “Joint GM & DM”, which can be directly fed into
various of classifiers, including our ML-TPS model.

5 Experiments and Results
The effectiveness of our ML-TPS model and the feature extraction strategy is evaluated in
this section, through two binary classification problems: AD vs. NC, and MCI vs. NC.
The performance of various classification solutions is compared based on three measures:
classification accuracy (ACC), i.e., the proportion of correctly classified subjects among the
whole test set; sensitivity (SEN), i.e., the proportion of correctly classified AD (or MCI)
patients; and specificity (SPE), i.e., the proportion of correctly classified normal controls. In
the end, we also compare our method with three state-of-the-art AD/MCI diagnosis solutions
[6, 22, 39] that also use T1-weighted MRIs from the ADNI database.

5.1 Comparisons of Different Features
The first set of experiments is to investigate the efficacy of different features in distinguishing
AD and MCI from normal controls. Specifically, the three types of features, i.e., “GM only”,
“DM only”, and “Joint GM & DM” in Section 4 are evaluated based on three performance
measures, ACC, SEN, and SPE. Both kNN and a kernel support vector machine (kSVM) are
utilized for classification to reduce the potential bias introduced by any particular classifier.
To better compare the classification performance, we run each experiment 100 times with
different random 3-fold splits (two folds for training, one fold for testing). We choose k = 1
for kNN, and a Gaussian kernel for kSVM. The two hyper-parameters C and σ in the kSVM
are tuned via 3-fold inner cross validation (CV) respectively from {2−15 ∼ 215}.

AD versus NC MCI versus NC
Classifier Feature ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%)

kNN
GM only 85.9 78.7 91.1 77.8 73.6 82.0
DM only 84.3 80.9 87.0 78.1 74.9 81.5

Joint GM & DM 88.4 84.7 91.6 79.3 76.5 82.2

kSVM
GM only 85.2 80.2 88.9 74.7 72.8 76.5
DM only 82.6 80.4 84.3 70.4 65.0 75.7

Joint GM & DM 87.1 85.7 88.1 75.3 73.1 77.5

Table 1: Comparisons of the three different features for AD vs. NC and MCI vs. NC
classifications. Boldface denotes the best performance for each classifier.

The classification results based on the three different features, averaging over the 100
runs, are summarized in Table 1. It is evident that the idea of combining longitudinal and
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baseline features paid off – “Joint GM & DM” feature has generally improved the classifi-
cation performance over the two single feature types, “GM only” and “DM only”, for both
kNN and kSVM. Note that, since we used kNN as the wrapped classifier in the feature se-
lection step, the performance of kNN in this set of experiments is generally better than the
kernel SVM. We believe the performance of kSVM can be further improved if it is used as
the wrapped classifier.

(AD versus NC)

(MCI versus NC)

Figure 2: Visualization of selected patches in the “Joint GM & DM” feature for AD vs.
NC and MCI vs. NC classifications. The columns from left to right are: sagittal, coronal,
axial and 3D views; yellow and red colors indicate they are originally GM or DM patches
respectively.

To better interpret the features, we further visualize the “Joint GM & DM” patches that
are selected for AD vs. NC and MCI vs. NC classifications. Fig. 2 shows the selected cubic
patches, which originally belong to either the GM (yellow) or the DM (red) patch pools. It
can be observed that the most discriminative brain areas detected by our strategy include
hippocampus, parahippocampal gyrus, entorhinal cortex, and amygdala, which are consis-
tent with the findings in the literature [6, 22, 39]. Furthermore, we find that the overlapped
areas of the GM (yellow) and DM patches (red) are quite small, which somewhat indicates
the two types of features, when combined together, are rather complementary and working
cooperatively in identifying the cross-sectional and longitudinal disparities among patient
groups.

5.2 Comparisons of ML-TPS with other ML methods
The second set of experiments is to test the effectiveness of our proposed nonlinear metric
learning model in improving AD/MCI versus NC classifications 2. Specifically, we compare
the improvements over the baseline classifier made by ML-TPS against five state-of-the-art
metric learning methods: Neighborhood Components Analysis (NCA) [18], Information-
Theoretic Metric Learning (ITML) [7], Large Margin Nearest Neighbor classification (LMNN)
[34], multi metric LMNN (mm-LMNN) [35] and Parametric Local Metric Learning (PLML)

2We also conducted a set of experiments on the UCI repositories to show the effectiveness of our nonlinear
ML-TPS, and the experimental results are included in the supplementary materials.
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[33] methods. As mentioned before, ML methods estimate feature transformations, and can
be used as the preprocessed step for any metric-based classifiers and also SVM [37]. Here,
we choose kNN (with k = 1) as the baseline classifier, and use the “Joint GM & DM ”
feature for classification, due to their superior performance over other features (shown in
Section 5.1).

AD versus NC MCI versus NC
Classifier ACC(%) SEN(%) SPE(%) ACC(%) SEN(%) SPE(%)

kNN 88.4 84.7 91.6 79.3 76.5 82.2
NCA + kNN 84.1 79.1 87.8 75.2 74.9 75.5
ITML + kNN 86.7 82.4 90.0 76.4 77.3 75.0

LMNN + kNN 84.2 78.2 88.9 74.7 75.5 74.0
mm-LMNN + kNN 84.0 80.6 86.5 76.5 76.3 76.7

PLML+ kNN 83.4 79.4 86.6 71.5 69.3 73.9
ML-TPS + kNN 90.5 84.9 94.1 81.6 79.5 83.7

Table 2: Performance comparision of ML-TPS with other ML methods for AD vs. NC and
MCI vs. NC classifications. Boldface denotes the best performance for each measure.

We adopt the same performance measures (ACC, SEN, SPE) and experimental setting
(3-fold splits with 100 runs) as in Section 5.1. The hyper-parameters of NCA, ITML, LMNN
and mm-LMNN are set by following [7, 18, 34, 35] respectively. PLML has a number of
hyper-parameters, so we follow the suggestion of [33]: use a 3-fold CV to select α2 from
{0.01 ∼ 1000}, and set the other hyper-parameters by its default. In the proposed ML-TPS
model, there are two hyper-parameters: the number of anchor points p and the weighting
factor λ . For p, we empirically set it to 30% of the training samples; for λ , we select
it through CV from {5−5 ∼ 525}. The classification results of each method for AD/MCI
versus NC are summarized in Table 2.

As we can see from the results, our ML-TPS has the best classification performance with
the highest ACC, SEN, SPE for both AD vs. NC and MCI vs. NC, which means it has
improved the overall performance of the baseline kNN classifier. Especially for AD vs. NC
classification, it reduces the error rate of kNN from 11.6% to 9.5%. This improvement is
quite significant, considering the in vivo diagnostic error rate for AD is believed to be around
8 ∼ 10% [14]. It is worth noting that the other five ML methods all fail to improve the
performance of kNN on this AD/MCI versus NC classification task. We believe it is because
the underlying linear or piecewise linear feature transformations they adopt are not powerful
enough to account for the complicated data patterns in AD/MCI vs NC, where the group
boundaries are fuzzy and highly nonlinear. While the results in Table 2 show otherwise, the
five competing ML solutions, in general, can greatly improve the classification rates over
kNN. This has been demonstrated in many machine learning studies. Experiments on the
popular UCI repositories, enclosed in the supplementary materials, provide a side evidence.

5.3 Comparisons with state-of-the-art AD staging methods

Numerous solutions [6, 22, 29, 39] have been proposed in the literature for AD/MCI/NC
patient classification. Some very recent works [28, 29] reported rather high classification
rates through the applications of multi-modality information integration (mainly MRIs and
PETs) and sophisticated multi-classifier decision fusion schemes. However, direct compar-
isons of the methods are often not feasible, unless common subjects, datasets and modalities
are employed, as in the evaluation project conducted by Cuingnet et al. [6].
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Method Study Feature Classifier AD versus NC MCI versus NC
Size ACC SEN SPE ACC SEN SPE

Cuingnet et al. [6] 475 Voxel-wise GM SVM 88.6 81.0 95.0 81.2 73.0 85.0
Zhang et al. [39] 202 93 ROI GMs SVM 86.2 86.0 86.3 72.0 78.5 59.6

Liu et al. [22] 652 Patch-wise GM SVM 86.4 83.9 88.6 79.4 79.2 79.5
Proposed method 338 Joint GM&DM ML-TPS+kNN 90.5 84.9 94.1 81.6 79.5 83.7

Table 3: Comparision of the proposed method with other existing methods for AD vs. NC
and MCI vs. NC classifications. Boldface denotes the best performance for each measure.

In light of this, we choose three recent solutions, which are very close in nature to our
model, as the competing methods: 1) voxel-wise GM densities based method [19] which
obtained the best performance among the ten methods evaluated in [6]; 2) 93-region GM
densities method [39], and 3) single classifier patch-wise GM method in [22]. Similar to our
method, they all use MR images as the sole information source and rely on certain single
classifier for classification. The comparison results are shown in Table 3. It is remarkable
that our model has the highest accuracies for both classification of AD vs. NC and MCI
vs. NC, especially considering that the underlying classifier in our model is the extremely
simple 1NN and the size of our studied set is relatively small. This would serve as another
side evidence for the power of the proposed combination of nonlinear metric learning with
dynamic longitudinal features.

6 Conclusion

In this paper, we have proposed a nonlinear metric learning method together with a multi-
resolution patch based feature extraction strategy for MR brain image based diagnosis of
AD and MCI. The proposed nonlinear metric learning learns a globally smooth nonlinear
transformation for the feature space, which generalizes the linear model that can be used to
improve various classifiers. The integration of the longitudinal atrophy information is car-
ried out within the proposed feature extraction step, which largely improves the classification
of AD/MCI versus NC when working with the baseline information. The geometric model
used in this paper is thin-plate spline, and it can be extended to other radial distance func-
tions. To explore other types of geometric models, as well as different ways to integrate the
longitudinal feature is the direction of our future efforts.
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