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Abstract

The identification and description of partial symmetries in man-made structures is a
powerful tool to improve the quality of 3D reconstruction from unordered images and to
enable high-level understanding of scene geometry. In this work we propose an approach
to identify symmetries and exploit them in Structure from Motion (SfM). Our first con-
tribution is a symmetry detection approach that uses the 3D geometry of the scene as
well as 2D appearance clues. We show that a particular parametrization of the trans-
formation space (space in which each point represents a candidate symmetry relation)
exposes the dominant symmetries in the scene. Then, we use appearance information to
prune incorrect symmetry hypotheses. The second contribution is a constrained bundle
adjustment (CBA) scheme that jointly optimizes for the best 3D reconstruction and the
symmetry generators. Contrarily to related work on CBA, our approach models n-fold
(rotational and translational) repetitions of architectural elements, and allows estimating
a generative model of the 3D geometry. Experimental results confirm that our method
can correctly identify and exploit partial symmetries in noisy and sparse SfM datasets.

1 Introduction
Several man-made 3D structures exhibit some sort of partial symmetry. The concept of par-
tial symmetry can be informally understood as the presence of an architectural element (e.g.,
a window, a column), that is repeated regularly within the 3D structure (a formal definition is
given in Section 2). Detecting and describing the symmetric elements is crucial for high-level
understanding of the 3D geometry (e.g, shape classification), to reduce model complexity,
or to edit the 3D model in a consistent manner [32]. Moreover, symmetries can inform SfM
and improve the quality of 3D reconstruction from an unordered set of images [5, 7].

While existing literature offers well established approaches for symmetry detection from
3D models (e.g., point cloud, mesh) these techniques assume the model to be dense and
geometrically correct [32]. Therefore, direct application to the noisy and sparse point clouds
resulting from SfM remains challenging. This observation triggered recent interest towards
joint solutions to detect symmetries and exploit them in SfM [5, 7]. While these works
provide excellent contributions towards the goal of symmetry-aware SfM algorithms, they
rely on strong assumptions (e.g., geometric priors [7]) or require manual annotation [5].
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Figure 1: The proposed approach uses (a) a set of 2D images, and (b) a sparse 3D reconstruc-
tion to detect repetitive patterns (regular structure) and exploits them for SfM. (c) Generative
model of the regular structure obtained from the proposed approach, for the Leuven dataset.

Related work. Our literature review is organized according to the type of input data fed
to the symmetry detection approaches. We distinguish 2D, 3D, and 2D-3D approaches.

2D approaches search for repeated patterns in a single image, and can be classified in
local and global approaches. Local approaches hypothesize symmetry generators from pair-
wise matches and then extract dominant symmetries using voting schemes [28, 38], greedy
or exhaustive search [22, 26, 42], vanishing points [48], or invariance-driven techniques [11].
Global approaches look for periodic texture over the entire image, using the Fourier trans-
form [21, 36, 45], Hough transform [6, 46, 50], autocorrelation [23, 25], tiling theory [8], and
moment-based methods [12]. Related work also uses 2D symmetries for 3D reconstruction
from a single image [14, 18, 19, 33], or to obtain procedural models [34, 49].

3D approaches look for symmetries in 3D models. Also in this case it is possible to distin-
guish global and local approaches. Global approaches use moment-based methods [29, 47],
correlation of the extended Gaussian image [44], spherical harmonics [30], Fourier trans-
form [9, 20], and multidimensional scaling [39]. Local approaches include geometric hash-
ing [10], voting schemes [31, 35], the reflective symmetry transform [37], graph-based ap-
proaches [3], and spectral methods [24]. We refer to [27, 32] for a comprehensive review.

2D-3D approaches detect symmetries from a set of images picturing a 3D scene. We call
them “2D-3D” as most of these approaches exploit both 2D images and a 3D reconstruction,
obtained via standard SfM; this initial 3D reconstruction has to discard false matches corre-
sponding to symmetric elements [40, 51]. 3D Symmetries do not necessarily produce regu-
lar patterns under perspective projection and this prevents direct use of 2D approaches [17].
Moreover, 3D approaches perform poorly on the models produced via SfM, which are noisy
and incomplete [5]. Jiang et al. [16] propose to rectify the 3D geometry to a surface and use
2D lattice detection to find repeated elements. Cohen et al. [7] look for inconsistencies be-
tween the essential matrix (estimated from feature matches) and the geometry of the scene to
detect symmetries, and use them for constrained bundle adjustment (CBA). Ceylan et al. [5]
focus on translational symmetry and detect repetitions in 2D images, with a user-guided
procedure. Ceylan et al. [4] use line features for symmetry-aided 3D reconstruction.

Contribution. We propose an approach for 2D-3D symmetry detection and we show
how to leverage the presence of repetitive structure to improve SfM reconstruction. Our ap-
proach includes three building blocks. The first is a multi-hypothesis estimator for the 3D
symmetry generators. We borrow key insights from [35], which shows how to map puta-
tive symmetry relations into a suitable transformation space. However, we skip grid fitting
(which is unreliable on SfM data), and we show that a polar parametrization of the transfor-
mation space clearly exposes dominant symmetries. The second block prunes the multiple
hypotheses on the generators and returns the generators that are most consistent with 2D
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appearance. This is similar to [17], while we avoid clustering and 3D surface fitting. Finally,
the last block takes the estimate for the generators and jointly refines this estimate and the
3D reconstruction. Contrarily to standard CBA we model n-fold translational and rotational
repetitions, we avoid priors [7] and user intervention [4], and we output a generative model.

2 Preliminaries on Symmetry
An object O is symmetric with respect to a transformation T if O = T (O), i.e., the object
is invariant under the action of T . This notion is also referred to as a global symmetry.
In many practical cases, only part of the object exhibits a repetitive structure, which does
not correspond to a symmetry in the whole object. For instance, the translational symmetry
of the windows in Fig. 1a does not correspond to a translational symmetry of the overall
building. The notion of partial symmetry [31, 32] captures these local similarities. An
object O exhibits partial symmetry with respect to a transformation T if there exist two
non-overlapping subsets S0,S1 ⊆O that are such that S1 = T (S0).

While the notion of partial symmetry implies the presence of a single repetition (S1) of
a basic element (S0), it is often the case that multiple copies of a single element occur in
the 3D model. This phenomenon is captured by the notion of regular structure [35]. A K-
parameters regular structure is a subset R⊆O that can be completely reconstructed given
a representative element E ⊆ R, a set of K generators g1, . . . ,gk and a set of integer dimen-
sions n1, . . . ,nk. For instance, the lateral facade of the Neptune temple in Fig. 4e-f exhibits a
1-parameters regular structure, as the facade can be reconstructed given the first column (the
representative element E), a vector describing the direction of the repetition (the generator
g) and the number of repetitions (the integer dimension n). The last column is an n-fold rep-
etition of the representative element. Another example is the facade of the Leuven Cathedral
in Fig. 1c, which exhibits a 2-parameter regular structure as a representative element (a win-
dow) is repeated both along the horizontal direction (generator g1) and the vertical direction
(generator g2). The tuple (E ,{g1, . . . ,gK},{n1, . . . ,nK}) is called a generative model [35].

3 Structural Symmetries from Motion
We are given a set of images picturing a 3D scene and our goal is to detect regular structures
and possibly exploit them to obtain an accurate 3D model. As in related work [7, 17], we start
by creating a sparse point cloud P from the images, using an SfM technique that discards
false matches resulting from symmetries. Our approach computes a set of hypotheses for the
generators of the regular structure using the sparse 3D model (Section 3.2). Then incorrect
generators are pruned using appearance information (Section 3.3). Finally, the generators
and the 3D model are jointly refined (Section 3.4). Before introducing our first contribution
(Section 3.2), Section 3.1 recalls the notion of transformation space from [35].

3.1 Feature Extraction and Transformation Space
This section describes how to create a set of putative symmetry transformations and represent
them in a suitable transformation space. We first detect 3D features on the point cloud
P . While related work obtains these features by uniform sampling [35], we use 3D SIFT
keypoints [41], and obtain N points s1, . . . ,sN ∈ R3 (an example is given in [1, Fig. 3]).
For each feature si, we associate a set of neighboring points Pi, which are within a ball of
radius r̄s from si. Then, for each pair (i, j) of features, we compute a relative transformation
by applying ICP to the patches Pi and P j. This gives a set of putative transformations
T .

= {Ti j : i, j = 1, . . . ,N}. Each Ti j describes a rigid transformation and can be written as
Ti j

.
= (Ri j, ti j), where Ri j ∈ SO(3) and ti j ∈R3. The set T contains many outliers (pairs (i, j)
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Figure 2: Leuven dataset: (a) Putatives in translational transformation space. (b) Related
works apply clustering, followed by grid fitting (e.g., [35]), to infer the regular structure
from the grid. (c) Since the 3D model is noisy and sparse, grid fitting performs poorly.

that are not related by a symmetry relation) and, even for the pairs that belong to the regular
structure, the transformation Ti j is produced by a composition of an unknown number of
unknown generators g1, . . . ,gk. To make the problem more tractable and since we are mainly
interested in symmetries in urban architecture, we focus on the following regular structures:
• 1-parameter regular structures: these have a single generator g1. We consider structure

with g1 ∈ SO(3) (rotational symmetry) or g1 ∈ R3 (translational symmetry).
• 2-parameter regular structures: these have two generators g1 and g2. Without consid-

ering scaling, there are only two admissible set of generators [35]: (i) g1 ∈R3, g2 ∈R3

(translation along two independent directions as in Fig. 1c), and (ii) g1 ∈ SO(3),
g2 ∈ R3 (rotation along an axis u, and translation parallel to u, as in Fig. 5a).

As in [35], we partition the set of putative transformations T into two subsets: the sub-
set Tt of transformations having almost null rotation, and the subset TR of transformations
having a significant rotation component (i.e., rotation angle greater than a threshold εR).

The putatives in Tt describe pure translations, hence we can visualize them as points
in R3. This set has to contain any evidence of translational symmetries. The seminal
work [35] shows that, when considering 1 and 2-parameter regular structures, the transla-
tions defining the regular structures lie in a subspace of R3 (intuitively, the 2 generators of a
2-parameter regular structure only span a plane in 3D space). Therefore, according to [35]
we re-parametrize the (translational) transformation space as a 2D space1, and we write each
putative transformation as a 2D vector xi j ∈ R2. The set of these putatives, T 2d

t
.
= {xi j}, is

called the translational transformation space. An example of T 2d
t is given in Fig. 2a.

Similarly, the set TR has to contain evidence of rotational symmetry. A mild assumption
(when dealing with urban architecture) is that the axis of the rotational symmetry is vertical.
Hence we select the subset of TR having rotation axis close to the vertical, and we store
the corresponding rotation angles. This allows us to reparametrize the putatives as a set of
rotation angles φi j ∈ (−π,+π]. We call T 1d

R
.
= {φi j} the rotational transformation space.

While the creation of the transformation space leverages the elegant formulation of [35],
we follow a different approach to “explore” this transformation space, searching for the
symmetry generators (Section 3.2). To motivate our approach, we now briefly discuss issues
arising from the direct application of grid fitting [35] to estimate the generators from the
SfM reconstruction. Pauly et al. [35] propose to first perform clustering, to expose recurrent
transformations; the result of clustering for the Leuven dataset is shown in Fig. 2b in blue.
Then, they fit a regular lattice using nonlinear optimization. The issue with this approach
is that the result of clustering is very cluttered when dealing with SfM data; moreover, the

1 This reparametrization requires to fit a plane to the 3D points in Tt (using RANSAC), and then projecting the
resulting inliers to the estimated plane [35]. Fig. 7 in [35] provides an intuitive description.
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optimization problem underlying grid fitting is nonconvex and has many local minima, hence
it can easily converge to an incorrect estimate of the generators (Fig. 2c). In the following
section we propose an alternative approach that avoids clustering and grid fitting.

3.2 Generator Hypotheses using the Polar Transformation Space
Let us start our discussion with the translational transformation space T 2d

t . The key insight of
our approach is the following: the presence of the repetitive structure in the 3D model implies
that many of the transformations xi j ∈ T 2d

t will be (approximately) in the form xi j = n · gk
(k ∈ {1,2}) i.e., will be produced by an n-fold repetition along the generator gk ∈ R2 (this
is also one of the motivations for the grid fitting of Fig. 2b). Moreover, the 2-vector gk can
be written as gk = δk ·uk, where δk ∈ R is the repetition period and the unit vector uk ∈ R2

(‖uk‖ = 1) is the repetition direction. Therefore, all the putatives generated by gk become
xi j = (nδk) ·uk, i.e., they share the same direction, while they possible have different norms.

In order to exploit this insight, we propose to re-parametrize the transformation space
T 2d

t in polar coordinates, i.e., we write each xi j ∈ T 2d
t as an angle/distance pair (θi j,ρi j).

We call the resulting set of pairs {(θi j,ρi j)} the polar transformation space (PTS). All the
putatives corresponding to repetitions along the generator gk, which we wrote in Cartesian
coordinates as (nδk) · uk, can be expressed in polar coordinates as (θk,nδk), where θk is
the angle between the direction uk and the horizontal axis; these putatives exhibit the same
angle θk, but possibly different distances. Therefore, we can expose the dominant symmetry
directions from an histogram plot of the angles {θi j}; an example for the Leuven dataset is
given in Fig. 3a1. The peaks correspond to directions that occur in many putative pairs,
and these are the most likely to capture a generator direction. The histogram in Fig. 3a1 is
obtained from the raw transformations in T 2d

t without preprocessing (we do not apply any
type of clustering or filtering). The 3D directions corresponding to the peaks of the histogram
are shown in Fig. 3b1. Note that the polar histogram also gives a clear picture of the number
of directions (we do not know a-priori if the repetitions are along 1 or 2 directions). For
instance, for the Neptune dataset (Fig. 3b2), the lateral facade of the temple only contains
a 1-parameter regular structure, and this is correctly captured by the histogram of Fig. 3a2,
which has a single prominent peak. In summary, from the angle histogram we can infer the
number of translational generators (this is the “K” in the definition of K-parameter regular
structure) and the directions uk (k = 1, . . . ,K), which can be computed from the peaks.

Now, to completely characterize the generators gk = δk · uk, we need to compute the
period δk, k = 1, . . . ,K. We argue that this is the difficult part of the symmetry detection
problem: even the putatives corresponding to the regular structure provide a guess on δk
only up to an unknown integer. We propose to use our polar representation also for the
computation of the period. For each dominant direction uk (or, equivalently, θk), we select
the points that are along this direction (in polar coordinates, these are the points (θi j,ρi j) with
|θi j−θk| ≤ εθ , where εθ is a threshold); then we compute the histogram of the distances ρi j
associated to these points. Examples of distance histograms are given in Fig. 3c1-c2, and
in [1, Fig. 4- 6]. Unfortunately, the distance histograms are not as clean as the angular ones
(Fig. 3a1-a2). This is due to both the presence of outliers and the fact that a single generator
creates multiple peaks, spaced at regular intervals (1-fold repetitions, 2-fold, etc.). The red
crosses in Fig. 3c1-c2 denote the 10 highest peaks, selecting the peaks that have distance at
least 0.3m.2 From our experience, selecting the largest peak can lead to erroneous period
estimate. While we could attempt fitting a 1D lattice to match the peaks in Fig. 3c1-c2, we

2The selection of the peaks can be done using the standard Matlab function findpeaks. From this selection,
we remove the peak at the origin, which is always present, but uninformative (the putatives at the origin correspond
to transformations that map each patch Pi to itself).
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Figure 3: Histogram of the angles θi j in the polar transformation space for the Leuven (a1)
and for the Neptune (a2) datasets. Corresponding 3D directions are visualized in (b1) and
(b2), respectively. (c1,c2) Histograms of the distances ρi j for the points in the transformation
space having angles θi j close to the highest peaks in (a1) and (b1), respectively.

prefer to return multiple hypotheses for the periods, corresponding to the m largest peaks.
Then we use appearance information to prune incorrect period hypotheses (Section 3.3).

In summary, the proposed PTS allows computing the number of generators K, the direc-
tion of each generator uk, and m hypothesis for the repetition period δ 1

k , . . . ,δ
m
k . Hence we

build m hypotheses for each generator as g j
k = δ

j
k ·uk, j = 1, . . . ,m. We argue that the advan-

tage of our approach over grid fitting is that we identify a subproblem that is easy to solve
(estimating K and the symmetry directions), and a subproblem that is hard (estimating the
period), but can be dealt with independently for each direction and reduces to a 1D problem.

We conclude this section by commenting on the detection of rotational repetitions. In
Section 3.1 we discussed how to obtain the 1D rotational transformation space T 1d

R = {φi j}.
Similarly to the distance histogram of Fig. 3c1, the histogram of the angles in T 1d

R , e.g., the
one in Fig. 5c, has multiple peaks spaced at regular intervals, corresponding to n-fold rota-
tional repetitions. Our approach retains the highest m peaks, corresponding to m hypotheses
for the rotational symmetry, which are then pruned as discussed in Section 3.3.

3.3 Appearance-based Generator Ranking
As discussed in Section 3.2, our approach uses the geometry of the 3D model to produce
multiple hypotheses for the generators of the regular structure. In this section we propose to
prune these hypotheses using appearance information from the images. The intuition is that
a good generator is one that maps a patch to another one having similar appearance (this is
essentially the concept or regular structure). Since each point in the 3D model is obtained
via SfM, it has a corresponding feature descriptor. Therefore, the appearance check reduces
to verifying that the generator maps a point to another point that has a similar descriptor.

We use this insight to devise a generator ranking scheme. For each generator hypothesis
g j

k we do the following. We consider each point p0 in the 3D model and we call d0 the
corresponding descriptor. We apply the transformation encoded in the generator g j

k and get
a second point p1. Then we look in a ball of radius r̄a around p1 and we check all the
descriptors d1 corresponding to points in this ball. If at least one d1 is close enough to the
original descriptor d0 (angle between the descriptors smaller than a threshold d̄), then we
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Figure 4: Leuven dataset: (a) initial estimate for the generators (before CBA); (b) number
of symmetry relations discovered during the CBA iterations; (c) symmetry relations shown
as lines connecting points considered n-fold repetitions of each other. Neptune dataset: (d)
initial estimate of the generators, (e,f): refined generator estimate from CBA.

say that p0 agrees with the generator g j
k. Repeating this process for each point in the cloud

we have a score for g j
k, which is simply the number of points that agrees with the generator.

Therefore, we select the best generator as the one having highest score. Scores for the
hypotheses in the Leuven and Neptune datasets are reported in [1, Figs. 7- 8]. We remark that
considering a ball around the transformed point p1 allows us to mitigate the impact of noise
in the generator estimates as well as the sparsity of the point cloud.

3.4 Bundle adjustment with Regular Structures
In Section 2 we recalled the concept of generative model (E ,{g1, . . . ,gK},{n1, . . . ,nK}),
which is a compact representation of a regular structure. In Section 3.2-3.3 we showed how
to compute K and obtain an estimate of the generators {g1, . . . ,gK}. In this section we dis-
cuss how to jointly refine the point cloud and the generator estimates, and we hint to a simple
approach to estimate the number of repetitions {n1, . . . ,nK}, and the representative element
E . For the joint refinement we propose an iterative strategy in which, at each iteration we op-
timize the point cloud and we try to discover new symmetries. As discussed in the following,
we alternate two steps: n-fold repetition discovery and regular structure refinement.

n-fold repetition discovery. The first step is to discover n-fold repetitions, for each of
generator gk; this step shares the same idea of Section 3.3. We consider each point p0 in the
3D model and we call d0 the corresponding descriptor. Then we apply the transformation
encoded in the generator gk and get a second point p1. Inside a ball of radius r̄a around p1,
we look for the point having descriptor which is closest to d0. If the closest descriptor is
within a distance d̄ from d0, then we establish a 1-fold symmetry relation between p0 and
p1, encoded by the tuple (p0, p1,gk,1) (the 1 stands for 1-fold); we store the tuple in a set S,
called the symmetry relations set. We repeat the same procedure for p1, trying to establish
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another 1-fold relation with a third point p2. If this succeeds we add the tuple (p0, p2,gk,2)
to S. We iterate this procedure until no more repetition satisfies the check on the descriptor.
As a result, we populate the set S, which describes the discovered n-fold repetitions.

Regular structure refinement. Now we show how to augment bundle adjustment (BA)
to encode rotational and translational regular structures. Standard BA [13] estimates the
position of a set of points {p j} and the parameters (pose, calibration) of a set of cameras
{Ci} from measurements Z; each measurement zi j ∈ Z represents a noisy projection of
point j to camera i. The estimates are computed by solving an optimization problem:

min
{p j},{Ci}

EBA({p j},{Ci}) = min
{p j},{Ci}

∑
zi j∈Z

f (π(Ci, p j)− zi j) (1)

where π(Ci, p j) is a function projecting point p j to camera Ci, while f (·) is a loss function.
Our goal is to augment problem (1) to encode structural constraints. Contrarily to ex-

isting approaches [2, 5, 7], that consider only translational symmetries or 1-fold repetitions,
we model n-fold rotational and translational repetitions. These repetitions are encoded in the
set S, which contains tuples in the form (p j, pl ,gk,n). We partition the set of symmetries S
into two subsets St and SR, the former containing only translational symmetries, the second
only rotational symmetries (we can easily distinguish them by looking at the generator in the
tuple). We write the generators in St as gk = tk (pure translation), and the generators in SR
as gk = Rk (pure rotation). Therefore, we augment the BA cost as follows:

min
{p j},{Ci},{tk},{Rk}

EBA ({p j},{Ci})+Et ({p j},{Ci},{tk})+ER ({p j},{Ci},{Rk}) (2)

with: Et ({p j},{Ci},{tk}) = ∑
(p j ,pl ,tk,n)∈St

∑
i∈Cl

f (π(Ci, p j +ntk)− zil)) (3)

ER ({p j},{Ci},{Rk}) = ∑
(p j ,pl ,Rk,n)∈SR

∑
i∈Cl

f (π(Ci,Rn
k p j)− zil)) (4)

where Cl is the set of cameras observing point pl . Intuitively, for every point l that is con-
sidered an n-fold repetition of another point j, beside minimizing the standard reprojection
error π(Ci, pl)− zil (included in EBA), we also minimize a corresponding term in which the
pl is written as an n-fold repetition of p j. For translational repetitions, we indeed substitute
pl with p j +ntk, while for rotational repetitions we write Rn

k p j (p j rotated n times).
We optimize problem (2) using the Levenberg-Marquardt method, which outputs an im-

proved estimate for the 3D points (and the cameras) and a refined estimate for the generators;
analytic expressions of the involved Jacobians are given in [1, Section 7]. Since the opti-
mization refined the 3D model, it possibly exposed other points belonging to the regular
structure, hence we repeat the n-fold repetition discovery described earlier in this section,
trying to expand the set of symmetry relations S. Iterating symmetry discovery and bundle
adjustment we converge to a set of symmetry relations S, and an improved estimate for the
generators of the regular structure. Indeed, Fig. 4b shows that the number of symmetry rela-
tions increases monotonically during the CBA iterations, meaning that more and more points
in the regular structure are discovered. In Fig. 4c the relations in the set S are visualized as
lines connecting points that are considered n-fold repetitions of each other.

As a conclusion of this section we mention a simple approach to estimate the number
of repetitions {n1, . . . ,nK}, and the representative element E (for space reasons we postpone
a more comprehensive discussion). Estimating the representative element E is essentially
equivalent to finding the “starting point” of the regular structure (e.g., the bottom-left corned
of the grid in Fig. 4a); in fact, since the size of the representative element E is known (it is
specified by the generators), this point uniquely identifies E . We proceed as follows. For
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Figure 5: (a) Simulated dataset with 2-parameter regular structure. (b) Histogram of angles
in the PTS. (c) Histogram of angles {φi j} in the rotational transformation space T 1d

R .

each generator, we identify the repeated points (these are the extreme points of each segment
in Fig. 4c). Then we project these 3D points along the generator direction. Looking at the
density of those points along the generator direction, we can estimate an initial and a final
point for the regular structure, from which we can also estimate the number of repetitions.

4 Experiments
In this section we complement the results presented so far by reporting all the parameters
used in our tests, and we consider a simulated dataset with rotational symmetry.

The Leuven and the Neptune datasets are described in [1, Fig. 1] and [1, Fig. 2]. We perform
the initial SfM reconstruction using Bundler [43]; then we extract 3D SIFT keypoints [41]
with a search radius of 2.5 · 10−2. For the multi-hypothesis estimator of Section 3.2, we
retain m = 10 hypotheses and we set εθ = 3deg. For the ranking technique of Section 3.3,
we use r̄a = 0.3 for the Leuven dataset and r̄a = 0.2 for Neptune. The SfM reconstruction is up
to scale, hence r̄a can be dataset-dependent. This radius has to be smaller than the repetition
period, to avoid matching a point with itself. For the generator ranking of Section 3.3, we
set the threshold on the descriptors’ distance to d̄ = 25deg. The generator estimate produced
by Section 3.3 is fairly accurate for the Leuven dataset (compare Fig. 4a with the estimate
of [35] in Fig.2c), while for the Neptune dataset it is noticeably incorrect (Fig. 4d). Errors in
the generators are more visible for large number of repetitions as inaccuracies are magnified
by n for an n-fold repetition. Further results and visualizations are given in [1].

The initial estimate of Section 3.3 is fed to the CBA refinement of Section 3.4. We
use the Huber loss as robust cost function in (2), and we set the parameter of the robust
kernel to 1.345 as prescribed in [15]. We use the cardinality of the symmetry relations set
S to design a the stopping criterion for CBA. This cardinality quickly increases at the initial
iterations, and then tends to stabilize (see Fig. 4b). For both the Leuven and the Neptune
dataset, we stop the iterations if the change in the number of relations is less than 5. The
refined estimate for the generators is shown in Fig. 1c for Leuven and in Fig. 4e-f for Neptune.

We conclude the experimental section with a dataset that contains a 2-parameter regular
structure with a vertical translation symmetry and a rotational symmetry. This is the sim-
ulated dataset in Fig. 5a. We set the threshold εR = 5deg, to distinguish putatives in the
rotational transformation space from the ones containing translations. The peak in Fig. 5b
indicates a dominant translation direction (the vertical). Fig. 5c shows the histogram of the
angles {φi j} in the rotational transformation space T 1d

R : peaks are repeated with a period of
30deg, capturing the rotational symmetry of the elements in Fig. 5a (more details in [1]).

5 Conclusion
We address the problem of discovering regular structures in SfM and exploiting them to im-
prove 3D reconstruction and understanding. We propose two key contributions: (i) a polar
parametrization of the transformation space that exposes dominant symmetry directions and
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provides multiple hypotheses for the repetition period; we then leverage appearance infor-
mation to identify the correct period. (ii) a constrained bundle adjustment formulation that
encodes n-fold translational and rotational repetitions; our CBA approach iteratively refines
the 3D model and increases the number of detected repeated patterns. We discuss the effec-
tiveness of our approach on real and simulated datasets.
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