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Abstract

The analysis and the understanding of object manipulation scenarios based on com-
puter vision techniques can be greatly facilitated if we can gain access to the full articu-
lation of the manipulating hands and the 3D pose of the manipulated objects. Currently,
there exist methods for tracking hands in interaction with objects whose 3D models are
known. There are also methods that can reconstruct 3D models of objects that are par-
tially observable in each frame of a sequence. However, to the best of our knowledge, no
method can track hands in interaction with unknown objects. In this paper we propose
such a method. Experimental results show that hand tracking can be achieved with an
accuracy that is comparable to the one obtained by methods that assume knowledge of
the object models. Additionally, as a by-product, the proposed method delivers accurate
3D models of the manipulated objects.

1 Introduction
Tracking the articulation of hand(s) in interaction with objects is an interesting and chal-
lenging computer vision problem. Existing approaches require accurate 3D models of the
manipulated object and/or rely on strong assumptions regarding the expected observations.
Creating the required 3D models can be a difficult and time consuming process as it often
involves specialized equipment and accurate calibration. The recent release of several cheap
RGB-D sensors inspired many researchers to develop methods that rely on these cameras to
map the environment and track human actions.

In this paper we propose a novel approach that can track human hands in interaction
with unknown objects, i.e., objects for which no a priori 3D model is given. As illustrated
in Fig.1, the input to the method is a sequence of RGBD frames showing the interaction of
one or two hands with an unknown object. Starting with the raw depth map (left) we per-
form a pre-processing step and compute the scene point cloud. We employ an appropriately
modified model based hand tracker and temporal information to track the hand 3D positions
and posture (middle bottom). In this process, a progressively built object model is also taken
into account to cope with hand-object occlusions. We use the estimated fingertip positions
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Figure 1: Method overview. Left: input depth and color frames. Middle: Object depth
segmented using the fingertip 3D positions. Partially scanned object model and hand models.
Right: 3D Rendering of the scene and final scanned model.

of the hand to segment the manipulated object from the rest of the scene (middle top). The
segmented object points are used to update the object position and orientation in the current
frame and are integrated into the object 3D representation (right). At the end, the 3D model
of the object is reconstructed, provided that every part of the object was observed at at least
one frame of the sequence. Besides the accurate tracking of the hands, the proposed method
provides an accurate 3D model of the object in the form of texture-mapped 3D mesh.

The main contributions of the proposed method are two. First, we propose the first
model-based 3D hand tracking approach that can track the interaction of hands with unknown
objects. Second, by accounting for the hands in the scene, we enable the 3D reconstruction
and tracking of the originally unknown object. Quantitative and qualitative experiments
show that both 3D hand tracking and object 3D model acquisition can be performed at an
accuracy that is comparable to that achieved under much more restrictive assumptions.

2 Related work

Several approaches have been proposed that track articulated objects like the human hands.
Furthermore, over the recent years a lot of research has been carried out with respect to
object 3D scanning and reconstruction. In this section we focus on methods that try to tackle
the problem of hand-object manipulation and in-hand reconstruction.
Hand-Object tracking: Hand tracking methods can be classified into model-based (e.g.,
[5, 13, 15]) data-driven (e.g., [8, 23]) or hybrid (e.g., [1, 19, 22, 25]). Model based ap-
proaches solve an optimization problem whose goal is to come up with the parameters of
a 3D hand model that best explains the set of available 3D observations. Data-driven ap-
proaches explore the mapping of visual observations to hand poses by employing learning
techniques. Model based approaches are typically more accurate, easily generalizable to
different scenarios and provide anatomically and physically plausible solutions at the cost

Citation
Citation
{deprotect unhbox voidb@x penalty @M  {}Laprotect unhbox voidb@x penalty @M  {}Gorce, Fleet, and Paragios} 2011

Citation
Citation
{Melax, Keselman, and Orsten} 2013

Citation
Citation
{Oikonomidis, Lourakis, and Argyros} 2014

Citation
Citation
{Keskin, Kiraç, Kara, and Akarun} 2012

Citation
Citation
{Tang, Chang, Tejani, and Kim} 2014

Citation
Citation
{Ballan, Taneja, Gall, Gool, and Pollefeys} 2012

Citation
Citation
{Qian, Sun, Wei, Tang, and Sun} 2014

Citation
Citation
{Tang, Yu, and Kim} 2013

Citation
Citation
{Tompson, Stein, LeCun, and Perlin} 2014



PANTELERIS et al.: TRACKING UNKNOWN OBJECTS 3

of being computationally demanding. Their high computational requirements are typically
handled by exploiting the inherent parallelism of computations in GPGPU architectures.
Data-driven approaches require training examples from the very high dimensional space of
hand articulations. In that sense, they are less accurate and less easily generalizable com-
pared to model-based approaches. Their solutions are synthesized in a bottom-up fashion,
thus they may lack anatomical validity and physical plausibility. On the other hand, despite
the computational requirements of the training/learning process, they are very efficient at
run time. Finally, hybrid approaches have both data-driven and top-down components, in an
effort to combine the best of both worlds.

Especially for the problem of tracking hand-object interactions, the model-based paradigm
appears to be preferable. The human hand is modelled as an articulated object of 26 degrees
of freedom (DoFs). At their offline learning stage, data-driven approaches need to sam-
ple this high dimensional space quite densely, which is already a very demanding task. As
soon as we consider hands in interaction with objects, training would require to learn the
appearance of a hand in interaction with any possible object, which, at least theoretically, is
a task on unmanageable complexity. Hybrid methods contain data-driven components that
require learning, so they also share this shortcoming. For this reason, for tracking hand(s) in
interaction with unknown objects, we restrict our interest to model based approaches.

Oikonomidis et al [17], used a model based approach and multicamera input to track
a single hand interacting with an object that was modelled as a parametric 3D shape (e.g.,
parallelepiped, cylinder, ellipsoid, etc). The actual parameters of the 3D shape were not
a priori known but were estimated together with hand articulation. While the approach is
inspiring, the assumption that the object can be represented as a parametric model is valid
for only a small subset of interesting objects. Krainin et al [9] implemented a system that
scans an object handled by a robotic arm. The method exploits RGB-D input fused with
proprioceptive sensory data to track both objects. Our work is using only depth information
thus allowing tracking of non-instrumented manipulators. Recently, Kyriazis et al [10, 11]
demonstrated model based methods that accurately track human hands interacting with ob-
jects. The method requires the initialization of the scene with the exact models of all the
manipulated objects.
In-hand reconstruction: Rusinkiewicz et al [21] presented an early work on the 3D re-
construction of in-hand objects using a structured light sensor. They focused on 3D object
scanning and masked-out the hand from the observations. All occlusions were treated as
missing information. The employed volumetric approach for object model integration was
based on previous work by Curless and Levoy [4]. Similarly, Weise et al [26] implemented
a 3D scanner using ICP [2] to perform the registration of the observed depth maps, and a
surfel-based representation for the reconstructed 3D model. The model was deformed dur-
ing integration to account for misalignments. A ToF camera was used by Cui et al [3] to scan
3D objects by applying super-resolution and global registration using ICP. Ren et al [20] used
both RGB and depth to achieve in-hand object scanning. Their approach used a bag-of-pixels
representation and back projection to perform tracking and a space carving approach to in-
tegrate the measurements into an object model. Newcombe et al [14] proposed a large scale
mapping and tracking pipeline based on ICP and volumetric reconstruction. While this work
was intended for room sized scenes, it was demonstrated to perform well even with smaller
scale “human sized" objects. In our work, we extend the ideas of Kinect Fusion to work with
hand-held small objects by accounting for the hand object occlusions.

In all these methods any hand-object interaction is ignored or accounted for as noise.
Even more importantly, no information is provided for the articulation of the hand(s) that
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Figure 2: Work flow of the proposed method. The basic pipeline employs depth information,
only. Color is used solely for producing textured versions of the computed object 3D model.

manipulate the object. In this work we model and track the interactions of the hand(s) with
the object while, simultaneously, we improve both the 3D hand tracking and reconstruction
results. The experimental results demonstrate that both the 3D hand tracking and the 3D
scans produced as a by-product of our method are of comparable accuracy and quality to
that of the current state of the art that, nevertheless, is based in considerably more limiting
assumptions.

3 Tracking Hands Interacting with Unknown Objects

The work flow of the proposed approach consists of five main components linked together
as shown in Fig. 2. The proposed method accepts RGBD input provided by a Kinect-like
sensor. At a first, preprocessing stage, the raw depth information from the sensor is prepared
to enter the pipeline. A point cloud is computed along with the normals for each vertex.
Then, the user’s hands are tracked in the scene. An articulated model for the left and right
hands, with 26 degrees of freedom each, is fit to the pre-processed depth input. The current,
possibly incomplete (or even empty, for the first frame) object model is incorporated to hand
tracking to assist in handling hand/object occlusions. Using the computed 3D location of
the user’s hands as well as the last position of the (possibly incomplete) object model, the
region of the object is segmented in the input depth map. The hands are masked-out from the
observation, by comparing it to the rendered hand models. Object tracking is achieved using
a mutli-scale ICP. The segmented object depth is used for a coarse to fine alignment with the
(partially reconstructed) object model. Finally, the segmented and aligned depth data of the
object with the current, partial 3D model are merged. The object’s 3D model is maintained
in a voxel grid with a Truncated Signed Distance Function (TSDF) [14] representation.

In all the above, we assume that a hand consists of a collection of 22 spheres and 15
cylinders that are appropriately transformed and coupled to represent its appearance and
kinematic structure. The resulting model has 26 DoFs. At each frame we extract the fingertip
3D positions X i

f with respect to the camera center. The unknown object is assumed to be
rigid. Its position and orientation with respect to the camera for a frame at time k is expressed
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with a rigid body transformation matrix:

T M
k =

[
RM

k tM
k

0> 1

]
∈ SE3, (1)

where SE3 := {R, t|R∈SO3, t ∈R3}. The transformation in Eq.(1) maps points in the camera
coordinate space to the object’s coordinate space at frame k.

At any given frame k, we maintain the partially reconstructed triangle mesh Mk of the
object along with the normals for each vertex. Thus, Mk = {V M

k ,NM
k ,FM

k }, where V M
k is the

set of mesh vertices in homogeneous coordinates, NM
k is the set of normals and FM

k is the set
of faces of the triangle mesh.

The hand tracking method does not assume a static camera. However, we assume that
the intrinsic parameters of the camera do not change during tracking. The camera projection
matrix P maps 3D homogeneous coordinates X = {X ,Y,Z,1} to a 2D point p on the image
plane, i.e., p = PX .

In the following sections, we provide more details for each of the building blocks of the
proposed approach.

Preprocessing: For each depth frame Rk we first perform bilateral filtering [24] in order to
reduce noise while preserving depth discontinuities [14]. The new depth map Dk is used to
compute the vertex map Vk. To compute the normal map Nk efficiently, we exploit the fact
that points that are neighbours in 3D will project to neighbours in the input depth map.

In a typical hand-object interaction sequence, objects are expected to initially rest on a
flat surface (i.e., a table). We detect the supporting plane by employing plane fitting through
RANSAC [6]. This results in a new vertex and normals map (V ′k and N′k, respectively) for
just the points that are above the supporting plane, as well as the corresponding segmented
depth map D′k. If the camera is static this plane detection step needs to be performed only
once, in the first frame of the sequence.

Hand Tracking: Hand tracking is based on a variant of the work of Oikonomidis et al [16].
Instead of relying on skin color for hand segmentation, we consider a 3D volume around the
3D position of the hand in the previous frame. In our implementation this volume was
empirically set to be 15cm around the palm center. By using only depth information, hand
tracking is not affected by illumination changes. Additionally, no restrictions exist on the
color of the tracked objects (for example, in [17] objects cannot have skin-colored parts).

In order to account for the presence of multiple interacting objects in the scene (i.e.,
two hands and one object), we formulate our objective function similarly to [11]. In each
frame k, we generate hypotheses about the hand configurations Hk and test them against the
observations V ′k . We extend the objective function to ignore the error generated by vertices
in the observation that belong to the object and not to the hands. To do so, we employ
the partially reconstructed model of the object from frame k− 1, Mk−1 and its last known
orientation and position with respect to the camera T M

k−1.
The object information from frame k−1 is incomplete, since it accounts neither for the

motion in the current frame nor for the appearance of previously unobserved object parts.
Despite that, we experimentally show it is enough to allow for the accurate tracking of the
hands and for high quality object reconstruction.
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Figure 3: Object segmentation. Left to right: the raw depth map; removal of the supporting
plane; results of flood-fill around finger tips and masking out the hands.

Object Segmentation: We use the centers of the spheres located in the fingertips of the
hand models as an estimation of the 3D positions for the user’s fingertips. Each fingertip po-
sition X i

f = (X ,Y,Z,1)> is re-projected using the camera projection matrix xi
f = PX i

f . Since
at least some of the finger tips are going to be in touch with the object, we use x f as seeds to
segment the hand and the object in D′k. This is achieved with a connected components based
segmentation that connects together all points of D′k that are (recursively) connected to the
estimated fingertips. It should be noted that because of masking out the supporting plane, D′k
does not include points of that plane.

The final step in object segmentation is to remove from D′k points that correspond to
hands. To do so, we use the hand pose estimated by the hand tracker and we render a
synthetic depth map, Dh, of the user’s hands. The object points D′o are then chosen by
masking out the points corresponding to the hand from the already segmented hand-object
depth map D′k. Using D′o, we segment the vertex and normal maps V ′k and N′k to obtain V ′o
and N′o. Figure 3 illustrates the steps of object segmentation starting from the raw depth.

Object Tracking: We perform object tracking using multi-scale ICP. The approach is de-
tailed in Newcombe et al [14] and was first demonstrated in a 3D modeling system by
Rusinkiewicz et al [21]. Our approach employs three layers that perform a coarse to fine
object pose estimation. The pyramid layers are computed starting from the segmented input
S1

k =
{

D′k,V
′
k ,N

′
k

}
as the bottom layer and by sub-sampling by block averaging to obtain the

next layers S2
k and S3

k . Similarly, the depth, vertex and normal components of the model Mk−1
are prepared, using the last known orientation and position with respect to the camera T M

k−1.
The registration step results in a transformation T M

f that maps the model from frame k−1
to k. The global transformation from the object coordinate space to the camera space is given
by T M

k = T M
f T M

k−1.

Updating the Object Model: Volumetric integration of range images using a signed dis-
tance function (SDF) was first introduced by Curless and Levoy [4]. The method has been
used in many implementations that employ active depth sensors both for small [21, 26] and
large [7] scale reconstruction. In the proposed method we used the truncated signed distance
function (TSDF) explained in detail in [14] to perform the integration of the segmented ob-
ject parts into a 3D volume representing the manipulated object.
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(i) (ii) (iii) (iv)

Figure 4: Object reconstruction accuracy of the spray (top) and cat (bottom) sequences.
(i) The actual object models. (ii) The 3D scans produced from the synthetic sequences.
(iii) The 3D scans produced from the real sequences. (iv) The error plot comparing the real
model (i) with the 3D scan (iii).

While the TSDF volume can cope with the noise and possible inaccuracies in the inte-
gration data, it is sensitive to cases where parts of the volume are occluded or missing for
a large number of frames. This might happen in our scenario when parts of the object that
were visible at some frame, become invisible for a large number of frames later on, due to
hand-object occlusions. To account for these cases we use our knowledge of the synthetic
hands depth map Dh (see Sec. 3) to exclude these voxels of the TSDF volume from being
updated with invalid information.

At the end of the integration process, ray-casting [18] is used to extract the model point
cloud. The normals are computed using the nearest neighbours of each point and triangulated
using greedy projection triangulation [12]. The new object model Mk is used in the next
frame, to account for the object observations in the hand tracking step as explained in Sec. 3.

Initialization: We initialize the pipeline with no information about the unknown rigid ob-
ject. In order to bootstrap the process the user places his hands at pre-set initialization po-
sitions and the hand tracking module initializes. At each frame k the method computes the
location of the hand parts in 3D space and segments the depth map around the fingers as
explained in Sec. 3. Since the foreground of the scene may contain any number of objects,
we initialize the reconstruction process only when the number of points in the segmented
object depth map D′o becomes greater that a preset, empirically defined threshold.

4 Experimental Evaluation

The proposed method was tested quantitatively and qualitatively in sequences where a per-
son manipulates objects of different sizes, with either one or two hands. The experiments
demonstrate that the hand tracking accuracy is practically identical to the one obtained when
the object model is known and fed into the tracking process. Moreover, the comparison of the
reconstructed object models to the actual ones shows only minor 3D reconstruction errors.
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Experiment Proposed [11], GT model [11], Scanned model
mean/median error mean/median error mean/median error

Single hand, cat 0.42 / 0.39 0.47 / 0.43 0.45 / 0.43
Single hand, spray 0.65 / 0.63 0.70 / 0.53 0.63 / 0.47
Two hands, cat 0.38 / 0.34 0.33 / 0.31 0.44 / 0.39
Two hands, spray 0.59 / 0.44 0.51 / 0.38 0.62 / 0.41

Table 1: Hand tracking accuracy (in cm) measured on the synthetic datasets. The accuracy
of the method is close to that of [11], although the latter assumes that the object model is
known a priori.

4.1 Quantitative Experiments

For the quantitative experiments, we tracked sequences using objects with known 3D models
and our implementation of [11]. The objects used are shown on the first column of Fig. 4.
The spray bottle model was acquired using a laser scanner, while the cat toy was 3D printed
from a CAD model. Both models have sub-millimetre accuracy. The dimensions of the
objects are approximately 8×5×25cm and 11×7×10cm (L×W×H), respectively.

For each object we created and tracked two sequences, one in which the object was ma-
nipulated with a single hand and another with two-hands. Subsequently, synthetic sequences
were rendered (depth frames) using the tracking information and the hand and object mod-
els. These synthetic sequences were used as ground-truth-annotated input. Each synthetic
sequence was fed to the proposed method that estimated the hand(s) articulation and the 3D
model of the object which was not known to it. The same input was also fed to the method
presented in [11] which was aware of the exact object models. We compare the proposed
approach to [11] with respect to hand tracking accuracy. Additionally, we compute the 3D
object reconstruction error resulting from our method.
Hand tracking accuracy: For each frame of a sequence, we measure hand tracking accuracy
by averaging the distances of the estimated hand joints from their ground truth positions.
Table 1 shows the mean and median hand tracking error over the whole sequence. The first
column shows that for the proposed method (object model is not known). The second shows
that for [11] (perfectly accurate object model - ground truth - a priori known). The obtained
results demonstrate that our approach results in hand tracking accuracy that is comparable to
that of [11], although our method is not aware of the object model.

The third column of Table 1 shows that the accuracy of [11] is basically unaffected if it
is fed with the object model that our method computed. This is an indirect indication of the
quality of the 3D model provided by our method.

Interestingly, [11] fails soon and completely in cases where the object model is not avail-
able. This is shown in Fig. 5. The yellow plot shows the hand tracking error of [11] in the
case of the synthetic dataset (spray bottle with two hands) and assuming two hands and no
object. As it can be verified, the hands are soon completely lost. The same method performs
very accurately when a precise object of the model is known (green plot). The proposed
approach has comparable performance (red plot), although it is not aware of the object ma-
nipulated by the two hands.
Object reconstruction accuracy: The second column of Fig. 4 illustrates the 3D models
that were reconstructed by the proposed method when operating on the synthetic datasets
(single hand experiment). The synthetic datasets do not suffer from sensor noise, so these
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Figure 5: Model based methods that do not account for the object in the scene will fail and
will not recover. Our method performs similarly with the full model based approach even
though the object is initially unknown.

models are very accurate. The third column shows the models acquired from the real se-
quences. Finally, the fourth column visualizes the error plot in millimeters between columns
(i) and (iii). The models produced using the volumetric reconstruction are thicker than the
real objects and this is evident on the edges of the plots. On the main body of the object
the error is in the order of 5 mm. Furthermore, while the trajectories of the scanned and
the ground truth models are not directly comparable, the quality of the reconstruction is a
measure of the quality of the object tracking.

4.2 Qualitative experiments

We performed extensive tests with different objects of unknown 3D models. The minimum
object size for our method is limited mainly by the accuracy of the sensor. In the case
of the Kinect and the Xtion RGBD cameras the minimum size was found to be close to
the toy cat presented in Sec. 4.1. Figure 6 illustrates sample results of these tests. Our
method performed well in manipulating objects such as a mask (first row) and in complex
actions such as preparing pancakes (second row) and handing an object from one hand to the
other (third row). A video showing qualitative experimental results is available at https:
//youtu.be/9r43PtJ0Fwg.

5 Conclusions

We proposed a method that enables the full 3D tracking of complex object manipulation
activities without the need of prior scene knowledge. This has been achieved by modifying
and integrating state of the art hand tracking and object modelling techniques. Experimental
results demonstrated that hand tracking accuracy is, essentially, not compromised by the lack
of the knowledge of the object models. Additionally, the proposed method delivers 3D object
models that are fairly accurate. While real time performance was not the goal of this work,
tracking a single hand in interaction with an object can be achieved at a frame rate of 10 fps

https://youtu.be/9r43PtJ0Fwg
https://youtu.be/9r43PtJ0Fwg
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(i) (ii) (iii) (iv)

Figure 6: Qualitative results, multiple objects of various sizes reconstructed while being
manipulated by a single or two hands. (i) Image of the object. (ii) A frame from the tracking
sequence. Hand models and partial object models are superimposed on the image. (iii) 3D
scan normals. (iv) Views of textured versions of the acquired 3D models.

(python and C++ implementation on an i7 processor equipped with an NVIDIA GTX970
GPU). This performance drops at ∼ 4fps in the case of tracking bimanual manipulation
scenarios. Further optimizations on our implementation are expected to result in real time
performance.
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