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Abstract

We propose a novel approach to online visual tracking that combines the robustness
of sparse coding with the flexibility of voting-based methods. Our algorithm relies on a
dictionary that is learned once and for all from a large set of training patches extracted
from images unrelated to the test sequences. In this way we obtain basis functions, also
known as atoms, that can be sparsely combined to reconstruct local image content. In or-
der to adapt the generic knowledge encoded in the dictionary to the specific object being
tracked, we associate a set of votes and local object appearances to each atom: this is the
only information being updated during online tracking. In each frame of the sequence
the object’s bounding box position is retrieved through a voting strategy. Our method
exhibits robustness towards occlusions, sudden local and global illumination changes as
well as shape changes. We test our method on 50 standard sequences obtaining results
comparable or superior to the state of the art.

1 Introduction
Tracking arbitrary objects in video sequences is an unsolved problem in computer vision.
Current methods are required to be flexible to handle abrupt appearance changes while ex-
hibiting robustness to external factors such as varying lighting conditions, viewpoint changes,
occlusions and background clutter which can otherwise trigger algorithm failures. Since ob-
ject tracking is central to many computer vision tasks, research efforts have been focused on
proposing new algorithms that are capable of dealing with real-world challenges.

Current approaches can be grouped into two classes: discriminative trackers, which make
use of a classifier to distinguish the object of interest from the background, and generative
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trackers, which rely on appearance models to capture and match the visual characteristics of
the object of interest across the frames. Recent examples of discriminative methods [5, 7]
made use of a voting strategy to track deformable objects while ensuring robustness towards
occlusion. Generative approaches such as [12, 15, 16] rely on a set of object templates stored
in a dictionary to maintain the appearances of the object of interest and on sparse coding to
robustly recognise it.

Our approach combines the advantages of both sparse coding and Hough voting-based
strategies to reliably track unconstrained objects. Instead of using dictionaries containing
object templates and relying on the reconstruction error to score candidate object positions
as in [2, 15, 16, 17], we learn a generic, fixed, over-complete dictionary from small patches
collected from images unrelated to the test sequences. Such resulting universal dictionary,
which is estimated once and for all, is capable of reconstructing portions of the target object
using a sparse combination of visual words selected with the awareness of the large range of
appearances that can be found in real-world situations, as supported by the findings of [13].

At initialisation, the content of the manually placed bounding box is reconstructed patch-
wise through the atoms of the dictionary and the notion of target shape and appearance is
acquired by storing votes associated to each atom. The votes are stored as displacement
vectors between the patches sampling positions and the center of the bounding box, while
the appearances are represented by the reconstructions obtained through the dictionary. Due
to the fact that the object is modelled locally by means of small patches, our approach is able
to cope well with the presence of occlusion, noise, blur, sudden local and global illumination
changes and background clutter. Furthermore, our approach can adapt to appearance changes
of the tracked object by means of a specific update procedure of the votes and appearances
associated to the dictionary atoms.

2 Previous Work
Discriminative approaches to visual object tracking make use of classifiers to produce binary
[1, 9] or structured predictions [5, 6, 7, 8] and therefore distinguish the object of interest from
the background. The most relevant factors influencing the performance of the trackers are the
discriminative capabilities of the features, the choice of the learning algorithm, and the on-
line update strategy. In [1] a classifier based on boosting was updated online using multiple
instance learning, while [9] proposed to integrate structural constraints in order to limit the
impact of data-samples that are unlikely to be related to the target during update. More re-
cently [8] employed a kernelized structured output Support Vector Machine (SVM) to regress
the transformation of the bounding box between subsequent frames. In [6], Gaussian Pro-
cess Regression (GPR) was employed to discriminate the target position from background
points, by means of a semi-supervised approach that learns the discriminative model from
both previously seen samples as well as unseen candidates directly extracted from the current
frame. Hough forests have been used [5, 7] to jointly perform classification and localization
of the target bounding box. Data-points are classified and, depending on their label, they are
enabled to cast votes which localize the target. Recently, Convolutional Neural Networks
(CNN) have also been employed to classify between target and background [10].

Generative approaches such as [3, 4] model the appearances of the object of interest
using histograms and ensure robustness using a fast segmentation strategy which prevents
the appearances of portions of the background from triggering failures. In [3] a Graph Cut-
based segmentation method was employed in each frame to obtain reliable histograms. In
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Figure 1: Qualitative results on the sequences ‘Trellis’, ‘Singer2’, ‘Deer’, ‘Car4’ and
‘Dudek’. Our results are highlighted in red, manual annotation from the benchmark se-
quence is depicted in green.

[4] a probabilistic framework was developed to obtain Maximum-A-Posteriori estimations
(MAP) of both a level set-based segmentation contour wrapping the object of interest, as well
as an affine transformation accounting for rigid object motion. Other generative methods
[2, 15, 16, 17] make use of a dictionary of target object templates and sparse coding to score
candidate bounding boxes positions. In each frame, patches are collected from the image
and sparsely reconstructed through the dictionary. The reconstruction fidelity serves as a
likelihood of candidate patches to depict the object of interest.

3 Method

We propose to carry out visual object tracking by means of an universal dictionary, learned
offline, together with a specific voting strategy. The algorithm comprises three steps:
Offline Dictionary learning — Where we learn a dictionary of visual words from a large set
of randomly sampled image patches, with the goal of obtaining a set of basis functions (i.e.
atoms) capable of reconstructing a large variety of local image appearances.
Tracker Initialisation — Aiming at adapting the generic knowledge captured in the dictio-
nary to the target object. This is achieved by storing votes to the bounding box centroid and
associated local object appearances in correspondence to each dictionary atom.
Online Tracking — Whose purpose is to track the object across the sequence using a gener-
alised Hough voting strategy. We reconstruct image patches through the dictionary and we
cast the votes associated to each atom employed for the reconstructions in order to obtain the
updated bounding box centroid position.

The intuition is that, as long as the appearances of the target do not radically change,
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Figure 2: During offline learning we obtain a generic dictionary from image patches (Sec.
3.1). The initialisation aims at collecting object-specific information in the form of votes
and local appearances (Sec. 3.2). Online tracking is implemented using a voting strategy to
retrieve the centroid of the bounding box (Sec. 3.3).

its parts are always reconstructed using the same set of atoms. Therefore, the bounding box
position in each frame can be retrieved using the proposed voting strategy. To cope with
object appearance changes, the votes and appearances are updated in each frame to achieve
robustness, while, conversely, the atoms of the dictionary are never modified.

3.1 Offline Dictionary Learning

Recent approaches demonstrated the capabilities of sparse coding to perform tasks such as
denoising, texture synthesis, compression and audio processing [11]. In these approaches,
a dictionary of non-orthogonal basis functions is employed to obtain sparse reconstructions
of the input signals. We propose to reconstruct parts of the image using a limited number of
basis patches, the atoms of the dictionary, which capture phenomena underlying real-world
appearances. In our intuition we can retrieve sparse codes that are discriminative of the ob-
ject of interest by deploying a dictionary capable of reconstructing a large range of different
image patches. In contrast to previous methods based on l1-sparse coding, we do not try to
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explain parts of the image using templates depicting the object of interest [2, 12, 16, 17],
neither we employ the reconstructions fidelities, which are potentially misleading, to score
candidate object positions. In our approach, we employ a dictionary that can approximately
reconstruct every possible image patch and which possesses knowledge about recurrent in-
tensity patterns as seen in the training set. As a result, we encode the object of interest
through combinations of dictionary atoms, each of which encodes the causes underlying
intensity patterns occurring in real scenes [13]. This is possible because our dictionary is
trained with an amount of data that goes well beyond that which is available in the first
frame of the sequence. During the first step of our algorithm (Fig. 2, top), we collect a
large set T = {t1, ..., tn} of grayscale image patches from generic images downloaded from
the Internet and we learn a dictionary D = {d1, ...,dk} containing k atoms by optimising the
following problem with respect to D:

argmin
D

1
n

n

∑
i=1

1
2
||ti−Dαi||22 +λ ||αi||1. (1)

We aim to minimise the sum of squared differences (SSD) between the patches contained
in the dataset T and their sparse reconstructions obtained as a linear combination of the
columns of D through the coefficients αi ∈Rk. The strength of the sparsity constraint can be
controlled through the parameter λ .

3.2 Tracker Initialization
Using the object bounding box provided in the first frame of every sequence, we initialise the
method by capturing the shape and appearance of the object of interest: we rely, as previously
stated, on a set of votes pointing to the bounding box centroid c = (cx,cy) together with a
representation of the appearances of the region where each vote originated from.

Specifically, the initial bounding box is subdivided into M×N sub-regions R1, ...,RM×N
which are linked with dedicated data structures storing votes and appearances. In this way,
we ensure that even if patches from different sub-regions are reconstructed using the same
set of dictionary atoms, the resulting votes never induce a violation of the initial spatial
configuration of the object’s sub-regions during tracking. That is, the absolute ordering of
the sub-regions cannot be changed. The subdivision of each template into sub-regions is
graphically depicted in Fig. 2, middle.

For each of the sub-regions we densely extract image patches p1, ...,ps at locations
x1, ...,xs having the same dimensionality as the atoms in D. Each patch pi is reconstructed
through D by solving the l1-sparse optimization problem

argmin
αi

1
2
||pi−Dαi||22 +λ ||αi||1 (2)

yielding the sparse coefficients αi, and the reconstructions p̂i = Dαi. Using these sparse
coefficients αi we identify the indices of the atoms that contributed to the reconstruction of
pi. Supposing that the i-th patch pi belongs to the j-th sub-region and that it required the
contribution of the k-th atom during its reconstruction, the vote vi = c−xi and the appearance
p̂i are respectively added to the sets V j

k and A j
k (Fig. 2, middle). Importantly, storing sparse

reconstructions p̂i as robust representations of region appearances is advantageous since it
allows to reduce the effects of noise, and it implicitly encodes the configuration of the sparse
coefficient vector α characteristic of the patches used for initialisation.
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Our l1-sparse optimisation of Eq.1 is almost instantaneous due to the fact that the dictio-
nary atoms di, as well as the signals pi, consist of very small patches with low dimensionality,
thus yielding an average computational cost for the initialisation step of typically just a few
milliseconds.

3.3 Online Tracking

We track the object across the sequence by retrieving the position of the bounding box cen-
troid in each frame through the voting strategy. We extract image patches p j

1, ...,p
j
N from the

area surrounding the last known position of each sub-region R j (50px2 in our experiments)
and we reconstruct them using the dictionary D solving the l1-sparse optimisation as stated
in Eq. 2. The obtained sparse codes α

j
i and the reconstructions p̂ j

i = Dα
j

i are respectively
employed to identify the atoms involved in each reconstruction and to obtain weights for the
votes V j

k by comparison with the learned appearances stored in A j
i (Fig. 2, bottom). Let

us suppose the i-th image patch belongs to the search area of the j-th subregion and that is
reconstructed through the k-th dictionary atom: we cast all the votes v(k, j)l stored in Vk

j after

weighting their contributions with the weights w(k, j)
l obtained as the reciprocal of the SSD

between the appearances a(k, j)l and the reconstruction p̂ j
i :

w(k, j)
l =

1

(a(k, j)l − p̂ j
l )
>(a(k, j)l − p̂ j

l )
. (3)

The weighted votes contribute to a vote map. The bounding box centre is found by
identifying the location of the highest peak in the smoothed vote map.

Since the different search areas often overlap, an efficient implementation of the recon-
struction can be achieved by solving Eq. 2 only once for all the patches in the global search
area, regardless of the sub-regions they belong to. After the sparse codes are retrieved, they
are interpreted using the information stored in the data structures of the specific sub-regions.

3.3.1 Update strategy

Once the bounding box is estimated, we select the atom of the dictionary that was employed
the most for reconstruction of the background area and we prune its votes and appearances
from the data structures of every sub-region. On the other hand, all the samples contained
inside the estimated bounding box serve to update the voting structures through a procedure
similar to the one used during initialisations. In this way, we aim to keep information about
the object until the moment it becomes misleading. This happens when votes and appear-
ances get coincidentally associated to background structures.

3.3.2 Handling scale changes and rotations

The votes and appearances employed in our method are not invariant to rotation and scale
changes. When the object changes orientation or size, the votes do not accumulate in clear
peaks anymore. To handle scale changes and rotations of the target object, we create different
versions of the input frame which are rotated and rescaled by fixed quantities. We decide for
the rotation and scale for which we obtain the vote map yielding the maximum peak. The
inverse of the estimated parameters are then added to the current state of the tracker.
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Figure 3: Our method, whose output is depicted using a red bounding box, is able to cope
with large rotations and scale changes. Note that the manual annotation provided in the
benchmark dataset [14], depicted in green, does not take into account rotations.

Figure 4: Backprojection of the Hough votes. Upper row: Output of our algorithm. Lower
row: Votes having high weights (jet colormap) were generated only by patches belonging to
the visible region of the object: the occlusion has a negligible effect on the vote map.

Since performing an exhaustive search by considering a large range of rotations and scale
changes is a computationally intensive task, we rely on the assumption, commonly used in
tracking, that the position, scale and rotation of the object changes smoothly from one frame
to the other. In this way, as shown in Fig. 3, we can deal with those changes by only
considering a small range of rotations and scale factors.

3.3.3 Robustness against occlusions

As previously stated, our method exhibits robustness to large amounts of occlusion. Since the
reconstruction of the object is performed patch-wise and a few patches are already sufficient
to cast a high number of votes with high confidence, we are able to localise the bounding box
even when large portions of the target are not visible. In Fig. 4 we show the behaviour of our
approach when the object undergoes occlusions. We re-project the votes that contributed to
the estimation of the bounding box in each frame to the position of the patches that generated

Citation
Citation
{Wu, Lim, and Yang} 2013



8 F. MILLETARI ET AL.: UNIVERSAL HOUGH DICTIONARIES FOR OBJECT TRACKING

Figure 5: Robustness towards illumination changes is achieved by normalising the patches
extracted from the image. Even in sequences like ‘David’, where extreme illumination
changes are present, our method performs correctly.

them and we observe that only visible parts of the object are able to effectively contribute to
the estimation of the bounding box centroid.

3.3.4 Robustness against illumination changes

The patches extracted from the images both during initialisation and tracking are normalised
to zero mean and unit standard deviation. The same applies to the appearances stored in
correspondence of the dictionary atoms. As briefly shown in Fig. 5, our method exhibits
robustness against extreme illumination changes.

4 Experimental evaluation
To test our approach we employ the benchmark dataset published in [14] that consists of
50 annotated sequences (51 targets) including challenging situations such as illumination
changes, deformations, occlusions, background clutter and motion blur. We compared with
the most recent approaches having publicly available results on this benchmark, in partic-
ular ‘L1APG’ [2], ‘MTT’ [16], ‘SCM’ [17], ‘Struck’ [8], ‘TGPR’ [6] and all the others
which have been evaluated in [14]. We follow the experimental protocols proposed in the
benchmark [14] and evaluate our approach in terms of success and precision. All the se-
quences were converted to grayscale. The parameters of each algorithm are fixed for all the
sequences and the bounding box used for initialisation is provided in the first frame. Since
the first frame of the sequence ‘David’ is very dark and unsuited for the initialisation of many
tracking algorithms, all the methods used for comparison were initialised at frame 300 while
ours was initialised at frame 1. Although our approach yields better performance when ini-
tialised at frame 300, we want to demonstrate that we are able to track the object correctly
even if the initialisation frame is extremely dark as shown in Fig. 5. The average overlap
and precision plots for all the experiments are depicted in Fig. 6. The performance of the
trackers is expressed in terms of area under curve (AUC) and these values are enclosed in
brackets in the plot of Fig.6. Qualitative results are shown in Fig. 1.

4.1 Parameters of the algorithm
The parameter λ , which controls the sparsity of both the dictionary and the sparse reconstruc-
tions is set to 0.1. The dictionary D consists of k = 300 8× 8 pixels atoms. During online
tracking, candidate patches are collected using a regular grid which has a 4 pixels spacing
and which covers a 50 pixels wide area around the last known position of the bounding box.
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Figure 6: Results in terms of success and precision comparing our method with top per-
forming algorithms on the 50 sequences (51 targets) of the CVPR13 Visual Tracking
Benchmark[14]. Area under curve (AUC) is reported in brackets.

To handle scale changes and rotations, we transform each frame by considering each possi-
ble pair of scale and rotation from the set of possible rotation offsets, ∆r =

[
−3 0 3

]
degrees, and the set of possible scale offsets, ∆s =

[
−0.03 0 0.03

]
. With these empir-

ically selected parameters, our MATLAB implementation processes approximately 5 frames
per second.

4.2 Results on selected sequences
From empirical observations we have noticed that the our tracking method tends to fail over
low-resolution sequences depicting small target objects or objects that are hardly distinguish-
able from the surroundings (in grayscale). As a result, the algorithm performs unsatisfacto-
rily in sequences such as ‘Basketball’, ’Bolt’, ‘Freeman3’, ‘Freeman 4’, ‘Girl’ and ‘Car-
Dark’. We conclude that, failure over ‘Freeman3’, ‘Freeman 4’ and ‘CarDark’ sequences
is due to the small size of the initial bounding box (with an area of resp. 156, 240, 667
px2), which causes the number of votes stored during training to be low. Failure in the
‘Basketball’, ’Bolt’, ‘Girl’ and ‘CarDark’ sequences are instead mostly determined by the
additional presence of background clutter and lack of contrast between the objects and their
surroundings in the grayscale images. Once these sequences are left out from the evaluation,
we observe that the performance gap between our approach and the others remarkably in-
crease to our favor, as witnessed by Fig. 7, which shows the results, in terms of success and
precision, on 44 sequences (45 targets), where the 6 benchmark sequences having smallest
resolution and target size were excluded.

5 Conclusion and future work
We presented a novel method for robust object tracking which uses dictionaries in a new
fashion: generic, non object-specific information is learned from random images and it is
used to reconstruct the object of interest patch-wise. The locality of these reconstructions
coupled with the robustness of Hough voting allows the algorithm to perform in presence of
large occlusions, illumination changes, motion blur and background clutter. Our approach
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Figure 7: Results in terms of success and precision our method in comparison with top
performing algorithms on 44 sequences (45 targets). Area under curve (AUC) reported in
brackets.

outperforms the state of the art on every sequence apart from the ones that suffer from very
low resolutions and depict very small, hard to distinguish, target objects.

As a future work we plan to investigate a similar strategy using deep sparse auto-encoders
instead of dictionaries.

6 Acknowledgement
We would like to acknowledge DFG for having supported this work through the grant BO
1895/4-1.

References
[1] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Visual tracking with online

multiple instance learning. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 983–990. IEEE, 2009.

[2] Chenglong Bao, Yi Wu, Haibin Ling, and Hui Ji. Real time robust l1 tracker using
accelerated proximal gradient approach. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 1830–1837. IEEE, 2012.

[3] Vasileios Belagiannis, Falk Schubert, Nassir Navab, and Slobodan Ilic. Segmentation
based particle filtering for real-time 2d object tracking. In Computer Vision–ECCV
2012, pages 842–855. Springer, 2012.

[4] Charles Bibby and Ian Reid. Robust real-time visual tracking using pixel-wise posteri-
ors. In Computer Vision–ECCV 2008, pages 831–844. Springer, 2008.

[5] Juergen Gall, Angela Yao, Nima Razavi, Luc Van Gool, and Victor Lempitsky. Hough
forests for object detection, tracking, and action recognition. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 33(11):2188–2202, 2011.



F. MILLETARI ET AL.: UNIVERSAL HOUGH DICTIONARIES FOR OBJECT TRACKING 11

[6] Jin Gao, Haibin Ling, Weiming Hu, and Junliang Xing. Transfer learning based visual
tracking with gaussian processes regression. In Computer Vision–ECCV 2014, pages
188–203. Springer, 2014.

[7] Martin Godec, Peter M Roth, and Horst Bischof. Hough-based tracking of non-rigid
objects. Computer Vision and Image Understanding, 117(10):1245–1256, 2013.

[8] Sam Hare, Amir Saffari, and Philip HS Torr. Struck: Structured output tracking with
kernels. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages
263–270. IEEE, 2011.

[9] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. Pn learning: Bootstrapping bi-
nary classifiers by structural constraints. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 49–56. IEEE, 2010.

[10] Hanxi Li, Yi Li, and Fatih Porikli. Robust online visual tracking with a single convo-
lutional neural network. In Computer Vision–ACCV 2014, pages 194–209. Springer,
2015.

[11] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary
learning for sparse coding. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 689–696. ACM, 2009.

[12] Xue Mei and Haibin Ling. Robust visual tracking using l1 minimization. In Computer
Vision, 2009 IEEE 12th International Conference on, pages 1436–1443. IEEE, 2009.

[13] Ivana Tosic and Pascal Frossard. Dictionary learning. Signal Processing Magazine,
IEEE, 28(2):27–38, 2011.

[14] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[15] Junliang Xing, Jin Gao, Bing Li, Weiming Hu, and Shuicheng Yan. Robust object
tracking with online multi-lifespan dictionary learning. In Computer Vision (ICCV),
2013 IEEE International Conference on, pages 665–672. IEEE, 2013.

[16] Tianzhu Zhang, Bernard Ghanem, Si Liu, and Narendra Ahuja. Robust visual tracking
via multi-task sparse learning. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 2042–2049. IEEE, 2012.

[17] Wei Zhong, Huchuan Lu, and Ming-Hsuan Yang. Robust object tracking via sparsity-
based collaborative model. In Computer vision and pattern recognition (CVPR), 2012
IEEE Conference on, pages 1838–1845. IEEE, 2012.


