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Abstract

Great approaches to natural image segmentation have been made in recent years by
learning from human segmentations, however little attention is paid to the behavior of
human subjects in segmenting images. The paper investigates the effort made by human
subjects and proposes an empirical method to estimate the boundary tracing loads, then
establishes a model for natural image segmentation based on the least effort principle.
We sort the hierarchies exhibited in human segmentation processes which use the BSDS
tool, together with the monotonicity observed in the region merging processes, into two
constraints on our model. Then an algorithm is established to segment natural images
from scratch with pretty high efficiency thanks to the monotonic merging strategy.

The experiment on BSDS500 shows our method obtains the state-of-the-art perfor-
mance on both boundary and region measures. The average time consumption is only
1s and far less than those of its competitors. We also propose a new integrating evalua-
tion measure, on which the performance of our method is noticeably worse than that of
human subjects, indicating it is still a long run to build a perfect segmentation method.

1 Introduction
Given that natural image segmentation is well-known as an ill-posed problem, then how can
we design an algorithm to obtain good performance as human subjects? A choice is to learn
from human segmentations, as in [5][20][11][12][24]. Amongst them, MCG [12] obtains
the state-of-the-art performance and fairly high computational efficiency in all segmentation
methods, indicating the necessity of learning.

Then a question arises here: what should we learn? All literatures learning from hu-
man segmentations focus on either local cues of contours [20][5], or global cues for good
segmentations [4][24]. They predict contours from hand-tuned [5][20] or auto-constructed
features [21] by classifiers including the emerging structured forests [13][14][17], then com-
pute segmentations in the way independent of that of human subjects, such as with the ucm
method [10].

The way they exploit human segmentations ignores a basic fact that human segmentation-
s are produced by human operations. As a kind of human activities, the human segmentation
process would inevitably exhibit the universal characteristics of human behaviors. In 1940’s,
Zipf published his famous study, the least effort principle (LEP), stating that a human will
strive to solve his problem in such a way as to minimize the total work that he must ex-
pend [6]. It has been widely investigated in from evolutionary biology to web-page design,
however is seldom mentioned in the computer vision researches.
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(a) (b) (c) (d)
Figure 1: Images and human-annotated boundaries. (a), (c) and (d) are all from the BSDS.
The painting in (a) are an entire image in (b) itself. All boundaries are shown in green. In (c)
and (d), the mis-located boundaries are bounded by red boxes. Zoom in for the better view.

The principle gives us a new insight into our problem. There is a small painting at the
up-center in fig.1.a, and only one human subject makes little effort to partition the painting.
However, the case is totally different if the painting itself forms an entire image, as shown
in fig.1.b. Why? The only difference is between their sizes, but the explanation, only large
regions deserve refined segmentations, is hardly convincing. From the viewpoint of LEP,
the partitions of the embedded copy would be refined only if human subjects under-evaluate
their effort of tracing boundaries. With the roughly equal effort, the segmentation of fig.1.a
are as refined as in fig.1.b, but the boundaries inside the embedded copy will be far less than
those in the entire image. Consider another example in fig.1c-d, the boundaries in red boxes
are not accurate at all: none parts of the sky/grass should be put into the tree/hair regions.
Notice that these mistaken boundaries do not tamper the segmentation quality severely, but
they are much easier to trace, so human subjects choose them to save the tracing loads.

In Sec.2, we model the human segmentation processes in light of the LEP. Besides this,
we find the segmentation hierarchy is an explicit characteristic of human operations with the
BSDS tools [7]: human subjects are used to refine segmentations in a level-by-level style.
We argue, given human subjects can obtain perfect segmentations with the help/constraint
of BSDS tools, it should be possible to design a good algorithm by simulating the processes.
Therefore we take the hierarchy as one constraint on our model in Sec.3.1. Meanwhile, it
should be clarified we are not ambitious to claim hierarchies are adherent to human segmen-
tation operations in all scenarios rather than the BSDS experiments.

The popular method for hierarchical segmentation is merging regions based on search
trees [10], but its efficiency is low on large images. There is an interesting observation we
can exploit: most merging unit costs are monotonically increased during the region merging
processes. Then in Sec.3.2 we use the monotonic region merging strategy to improve the
computational efficiency promisingly. Finally in Sec.4, we propose a new evaluation mea-
sure by integrating all existing popular ones and evaluate our new algorithm on all measures.

2 Human Effort of Segmenting Images

Suppose you are a human subject in the BSDS segmentation experiment, and are required
to segment images into pieces under the ending instruction: each piece contains only one
single distinguished thing [4]. Then what effort you should make? Easy to see, the major
effort F consists of understanding images (U) to guide following operations, and tracing
boundaries (T ) by hands with a mouse:

F (I,S) =U (I)+T (S) (1)
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where I is an image, S ∈ {0,1}|E| is a segmentation configuration defined on the set E of
all pairs of adjacent pixels (1—two adjacent pixels in the same region, 0—otherwise). Then
from the viewpoint of LEP, human subjects would like to find an acceptable segmentation S
by minimizing their effort, or formally,

min
S

F (I,S) ,s.t. each piece contains only one thing. (2)

2.1 Formalizing the Ending Instruction
However, as the BSDS document says, the question whether or not a piece contains only one
thing, is rather vague and up to subjects themselves [4]. Nevertheless, if you can describe a
region easily such as ‘a uniformly blue region’, then there tend to be only one ‘thing’. On
the contrary, if you have to describe it with much effort such as ‘the left part is uniformly
blue while the right part is white and black squares’, there will likely be multiple ‘things’. In
other words, the less effort to describe with, the more likely a region is of ‘only one thing’.

We can describe a region with features/concepts in different levels, such as colors, tex-
tures and semantic concepts. In this paper, we use the low-level features only, and leave high
level concepts to our future work. There are two types of low-level descriptions we should
consider. The first is to describe pixels independently, and its effort can be measured by
entropies as in [16][22][18]. The second, a ‘regularity description’ as we call it, is usually
adopted by humans but seldom mentioned in literatures. Consider a piece of sky for which
a humans says ‘varying from dark smoothly to light blue’, it is hard to describe pixels in-
dependently as there are numerous different colors. Here humans exploit the regularity of
the perceptual differences between adjacent pixels. The regularity description effort can be
measured by color distances or contour probabilities. We add the two types of description
effort up as the total effort to describe a region.

But, is the description effort the only factor we should take into account when deciding
whether to partition a region or not? Consider four typical cases:

• the evidence of multiple things is clear, and you can trace the boundaries easily;
• the evidence of multiple things is clear, whereas you have to make great effort to trace

the boundaries;
• the evidence of multiple things is vague, meanwhile the potential boundaries are too

complicated to trace;
• the evidence of multiple things is vague, meanwhile you can trace the potential bound-

aries with moderate effort;

In the first two cases, splitting the region seems the only sound choice. In the third
case, it is more sensible to keep the region as a whole, because less effort is made while
the instruction is not violated. The last case is much tricky because we must balance the
description effort and the tracing effort: we usually choose one of the less effort between
‘splitting it’ and ‘keeping it’. In the following sections, we call a group of regions {Ri} is a
partition configuration of some region R, if ∪iRi = R and Ri∩R j = φ for all i, j’s. We call a
region R is RETAINABLE if it does not need to be partitioned, or formally,

RETAINABLE(R) = T RUE ⇐⇒ ∀ partition {Ri} of R,D(R)≤∑D(Ri)+T ({Ri}) (3)

where D(·) stands for the region description effort and T (·) stands for the tracing effort.
Then we can sort the ending instruction into the following constraint:
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Ending Constraint: We can end a segmentation process with a configuration S, if and
only if each region R induced by S is RETAINABLE.

2.2 Estimating Tracing Loads

First we clarify the tracing effort T in (3) should be the product of a subjective unit cost (λ )
and the tracing load (L), as we find the loads for ordinary people to trace the identical curves
are roughly equal, but their subjective evaluations are considerably different. We use ‘trace’
instead of ‘draw’ here because the boundaries are ‘already’ there partitioning distinguished
‘things’, and all we need is to figure it out. We estimate the tracing loads in an empirical way.
We collect several human subjects to trace the boundaries in the BSDS human segmentations,
and tell them to do it as precisely as possible. The tracing style is to use many small clicks
as recommended by the BSDS tools [7]. We record the time consumptions as the measure
of tracing loads, then analyze boundaries to find a way to predict them.

In our experiment, 870 boundaries are traced and their lengths vary from 20 to 2000
pixels. We find that, for those longer than 150, the time consumptions are larger if there are
more and/or sharper corners. Dividing 0 to π into 15 bins (the two bins including 0 and π

are 1.5 times large as the others), we find the tracing loads are linearly related to the corner
amounts of different bins. The following linear regression is subject to two facts: (1) the
tracing load of several boundaries should not be less than that of their union, and (2) the
sharper corners are harder to trace. The relative square error in our regression is about 0.07,
indicating a significant linearity. The normalized coefficients are show in table 1.

Table 1: Normalized coefficients of corner amounts. wi is the coefficient for the ith bin, we
is the weight of endpoints. w0 is the intercept. The values in parentheses are typical angles.

w1(0) w2(
π

8 ) w3(
3π

16 ) w4(
π

4 ) w5(
5π

16 ) w6(
3π

8 ) w7(
7π

16 ) w8(
π

2 ) w9(
9π

16 )
1.0000 12.5677 25.0774 25.0774 25.0774 25.0774 28.5677 28.5677 28.5677

w10(
5π

8 ) w11(
11π

16 ) w12(
3π

4 ) w13(
13π

16 ) w14(
7π

8 ) w15(π) we w0
28.5677 28.5677 45.7290 45.7290 45.7290 45.7290 38.1871 30.6387

The case of short boundaries (especially shorter than 50) is different, because we find the
regression coefficients of all corners are roughly equal. The reason is, the sharper corners in
short boundaries are not as evident as in long ones, and humans can hardly take the advantage
of moving inertia of the mouse to trace short smooth curves. We mix these two cases softly
with a Logistic function, to get a unified model to predict the load of tracing a curve ω:

L(ω) = length(ω)+
∑

15
i=2 ni · (wi−1)

1+ e−α·(length(ω)−β )
+[ω is not closed ] ·2 ·we +w0 (4)

where α = 0.1,β = 150, ni is the corner amount in the ith bin.
We find corners by estimating the Digital Straight Segments (DSS) on boundaries [19],

but in a slightly different way. We calculate the angles of the corners of any two incident
DSS’s, and put them into corresponding bins. Please see more details in our source codes.

The term U is hard to tackle, because analyzing it with either the psychology or the neural
science is far beyond the scope of the paper. Instead, we simply set it as a constant value.
Therefore U is irrelevant when minimizing the total effort F . In the following sections, we
also let L(S) to represent the load to trace all boundaries induced by a segmentation S, and
L({Ri}) to represent the load to trace all boundaries between any two regions in a region
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group {Ri}. Then the minimization of the effort Fλ on a unit tracing cost λ is equivalent to

min
S

λL(S) ,s.t. ∀ R induced by S,RETAINABLE(R) = T RUE. (5)

3 Least Effort-based Segmentation

3.1 Hierarchy Constraint
The BSDS human segmentations are produced hierarchically with the BSDS tool. Easy to
see, each time human subjects deciding to partition the image further, they would like to take
more tracing loads, or equivalently, their subjective evaluation on the unit cost of tracing
loads is reduced. It means the segmentations on low unit costs are produced by refining
those on higher unit costs. We sort it into the following constraint on F :

Hierarchy Constraint: If two pixels are separated in the optimal segmentation on an
unit tracing cost λ , they will also be separated in the optimal segmentations on costs which
are smaller than λ .

Or formally, suppose S1,S2 are the optimal solutions to (2) on the unit tracing costs λ1,λ2
respectively (λ1 ≤ λ2), then we have S1 ≤ S2. The last inequality is defined on vectors: we
call S1 = 〈s(1)i 〉 ≤ S2 = 〈s(2)i 〉 if and only if s(1)i ≤ s(2)i for all i’s. Immediately we have:

Lemma 3.1. For any λ1 < λ2, let S1 = argminFλ1 ,S2 = argminFλ2 . If S1 6= S2, and δ ∗ is

the unique solution to minδ

D(S1+δ )−D(S1)
L(δ ) , then S1 +δ ∗ ≤ S2.

Proof. Let λ0 = minδ

D(S1+δ )−D(S1)
L(δ ) , then we have λ1 ≤ λ0 due to the optimality of S1. Next

we will prove λ0≤ λ2. Otherwise, since S1 < S2, there must exists a region R and its partition
{Ri} satisfying D(R)−∑i D(Ri)

∑i, j L(Ri,R j)
≤ λ2 < λ0. It contradicts the minimality of λ0, so λ1 ≤ λ0 ≤ λ2.

Let S0 = argminFλ0 , then we have S1 +δ ∗ ≤ S0. Otherwise it contradicts the minimality
and uniqueness of δ ∗. Since we have S1 ≤ S0 ≤ S2 according to the hierarchy constraints of
F , then S1 ≤ S1 +δ ∗ ≤ S2�

We denote the value D(
⋃

Ri)−∑D(Ri)
∑i, j L(Ri,R j)

by muc({Ri}), the unit cost on which the region group
{Ri} merge into one big region. Suppose we have an optimal solution on the unit cost λ ,
then based on Lemma 3.1, the optimal solutions to larger unit costs can be found by merging
the region group of the minimum muc. However, the amount of all region groups is too huge
to be handled. A feasible way is to consider adjacent region pairs only, so to optimize F
approximately. Here’s the outline in Algo. 1, where Ω(·, ·) in step 5 represents the boundary
between two regions.

We can demonstrate the ucm-based method with the above framework. If we adopt only
the regularity descriptions, and estimate tracing loads only by boundary lengths, then we
would have the merging criterion of averaged contour probabilities in [10][11][2][24][12].

3.2 Monotonic merging
The key idea of Algo. 1 is to maintain a dynamically sorted search tree BST . After each
mergence, all adjacencies should be updated and re-arranged in BST . However, by profiling
we find about 80% updates are wasted as they are overwritten by new updates. For example,
we have a region Rd adjacent to three regions Ra,Rb and Rc, and the merging sequence are
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Algorithm 1: Segmentation based on Naive Merging
Input: Image I, threshold λthr of the unit cost;
Output: The segmentation result S.

1 S←{0}|E|; construct an empty search tree BST ;
2 calculate 〈muc(Ri,R j),Ri,R j〉 for all adjacent pixel pi, p j and insert it into BST ;
3 〈λmin,R1,R2〉 ←min〈λ ,·,·〉∈BST λ ;
4 while λmin ≤ λthr do
5 R← R1 ∪R2,S← S+Ω(R1,R2); check new corners and update tracing loads;
6 foreach R′ incident to R do
7 calculate and insert 〈muc(R,R′),R,R′〉 into BST , then sort the tree;
8 end
9 〈λmin,R1,R2〉 ←min〈λ ,·,·〉∈BST λ ;

10 end

Figure 2: Wasted updates in the toy example. The red line represents the adjacency of ab
and d, for which the muc is calculated but never used. The numbers on lines are the muc’s.

Ra–Rb and Rab–Rc. The updates involving Rd are corresponding to the potential mergences
Rab–Rd and Rabc–Rd , while the update for Rab–Rd will be overwritten by that of Rabc–Rd , as
shown in fig. 2. These wasted updates bring large burdens of calculations. Fortunately, we
find almost all mergences are subject to the following constraint:

Monotonicity Constraint: For any three regions Ra,Rb,Rc, let λ1,λ2,λ3 be the muc’s
of three mergences Ra–Rc, Rb–Rc and Rab–Rc respectively, it holds min(λ1,λ2)≤ λ3.

In a word, the merging unit costs are monotonically increased. For example in fig.2, the
muc of merging Rab and Rd is larger than the smallest of muc(Ra,Rd) and muc(Rb,Rd). So
it is unnecessary to calculate muc(Rab,Rd) before Ra,Rb,Rc merge into Rabc. Then we have:

Lemma 3.2. If the merging unit costs are subject to the monotonicity constraint, then the
output of algorithm 1 is the exact solution to (5). Furthermore, the muc’s calculated in the
step 7 are monotonically increased.

Proof. For the first part, it is sufficient to prove, for any group of regions, there must exist
two regions for which the muc is not larger than that of the whole group. Otherwise, we
repeatedly choose a pair of regions of the minimum muc to merge, until only one region
is left. We denote the ith muc by λi, and the corresponding tracing load by Li. Since the
boundaries of the region group are the union of all boundaries between any two regions, we
have the following contradiction

D(R) = ∑
i

D(Ri)+∑
i

λi ·Li > ∑
i

D(Ri)+λ ·∑
i

Li = D(R) (6)

The proof of the second part is straightforward. If the new mergence is not related to the
last mergence, then according to the minimality of the last muc, the new muc will be not less
than the last one. Otherwise, it would also hold according to the monotonicity constraint.
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In light of the monotonicity, we can replace the search tree BST in algorithm 1 with a
direct access table [1], DAT, to improve the computational efficiency. We divide the range of
the merging unit costs uniformly into lots of bins, each of which is corresponding to an entry
in DAT. On each entry, we store all region pairs of the corresponding merging unit costs.
Based on Lemma 3.2, all we need is to check the table entries sequentially and merge those
ACTIVE and UPDATED region pairs. When inserting a new record, we can locate the entry
directly according to its merging unit cost. Here’s the outline in Algo .2.

Algorithm 2: Segmentation based on Monotonic Merging
Input: Image I, threshold λthr of the unit cost;
Output: The optimal segmentation result S.

1 S←{0}|E|; construct an empty direct access table DAT ;
2 calculate 〈muc(pi, p j), pi, p j〉 for all adjacent pixels pi, p j;
3 insert these records into DAT , and label them as UPDATED and ACTIVE;
4 for λ ← 0 to λthr do
5 extracts the record 〈λ ,Ri,R j〉 from DAT ;
6 if its labels are UPDATED and ACTIVE then
7 R← Ri ∪R j,S← S+Ω(Ri,R j); check new corners and update tracing loads;
8 foreach region Rk adjacent to Ri and R j do
9 pick the record of the smallest muc from 〈muc(Ri,Rk),Ri,Rk〉 and 〈muc(R j,Rk),R j,Rk〉;

10 label it as OUTDATED, and the other as INACTIVE;
11 end
12 end
13 else
14 if its labels are OUTDATED and ACTIVE then
15 calculate and insert 〈muc(Ri,R j),Ri,R j〉 into DAT ; label it as UPDATED;
16 end
17 end
18 end

Once an adjacency record is labeled as OUTDATED but ACTIVE, then it is valid but
its merging unit cost should be updated in future. Once a record is labeled as INACTIVE,
it will be skipped when accessing DAT as the record is redundant. Since the merging unit
costs are increased monotonically, we do not have to update these records right after any
merging operations (step 7 in Algo. 2). Thus most wasted updates in Algo. 1 will be saved
by this ‘postponed updating’ strategy. In our experiments on the BSDS, the computational
efficiency is improved to be ten times high as that of naive merging.

4 Evaluation

4.1 Revisit on existing measures
There are several popular measures to evaluate the segmentation algorithms independently:
Boundary [11], Cover [11], PRI [11], VOI [11] and the recent Fop [8].However in existing
literatures, the best performances of a single method on these measures are usually reported
on dramatically different thresholds. Here we attempt to integrate the first four measures
to get a more objective measure, which can reflect both boundary and region performance
synchronously.

On each image, we let the human segmentations be positive samples, whereas random
segmentations be negative ones. We collect the measure scores, then train linear SVMs on d-
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ifferent measure combinations to distinguish human segmentations from random ones. Some
interesting observations can be done on the coefficients in table 2. The boundary measure is
the most discriminative one, as stated in [8]. The coefficient of PRI in the combination B+R
is negative, indicating it is partially ‘covered’ by the boundary measure. Finally, we choose
the combination of all measures (B+C+R+V in table 2) as our integrating measure.

Table 2: Coefficients of all existing measures in different combinations. In each combination,
all coefficients are normalized by the largest positive coefficient.

Combination Boundary(B) Covering(C) PRI(R) VOI(V) Accuracy(%)
B+C+R+V 1.0000 -0.0045 0.0539 -0.0677 99.92

B+C 1.0000 0.4535 - - 99.77
B+R 1.0000 - -0.0463 - 99.28
B+V 1.0000 - - -0.0722 99.90
C+R - 1.0000 0.6822 - 98.33
C+V - 1.0000 - -0.0251 96.96
R+V - - 1.0000 -0.1205 98.67

4.2 Evaluation Results
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Figure 3: Results on the BSDS500 val set. (a) boundary, (b) Fop, (c) the new measure.
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Figure 4: Results on the BSDS500 test set. (a) boundary, (b) Fop, (c) the new measure.

We train our models on the BSDS train set and evaluate the new algorithm (LEP in figures
and tables) on the test set and val set. We calculate the color entropy in the Lab space and the
texture entropy based on a variant of C-LBP [23], to measure the independent descriptions.
For the regularity description of a region, we calculate two values on all adjacent pixels:
the first is their normalized Euclidean Lab- distances, and the second are the odds being
separated in the structured predictions of a random forest [13][14] 1.

1All source codes and evaluation results are available on http://gait.buaa.edu.cn/~zqy/lep
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Our competitors include eight segmentation methods, MCG [12], SCG [12], UCM [11],
Taylor [2], MShift [3], NCut [9], ISCRA[24], EGB [15], and a contour detector SF [13][14].
We evaluate them with the public source codes or their pre-computed results. The evaluation
measures include Boundary, Cover, PRI, VOI, Fop and our new measure in Sec.4.1. The
experiment on BSDS500 shows that our method obtains the state-of-the-art performance, as
shown in fig.3, fig.4, fig.5, table 3, and table 4. Especially on its test set, our method is the
only one with the precision 0.90+ on the recall 0.50 (see fig.4.a). It runs on all images in less
than 1s in average, and is much more efficient than other method which has 0.70+ scores on
the boundary measure. Our method outperforms others again on the new measure, however
is noticeably worse than that of human subjects (see fig.3.c and fig.4.c).

Table 3: Results on the BSDS500 val set. The best values are shown in bold.
Boundary Fop Covering PRI VOI TimeODS OIS AP ODS OIS ODS OIS ODS OIS ODS OIS

Human 0.79 0.79 - - - 0.73 0.73 0.87 0.87 1.16 1.16 -
LEP(Ours) 0.74 0.76 0.79 0.39 0.46 0.62 0.68 0.82 0.86 1.51 1.31 1s
MCG[12] 0.73 0.76 0.74 0.36 0.42 0.61 0.67 0.81 0.86 1.55 1.37 20s+
SCG[12] 0.72 0.73 0.63 0.34 0.40 0.59 0.65 0.80 0.85 1.62 1.44 3.5s+
ISCRA[24] - - - - - 0.60 0.66 0.81 0.86 1.62 1.40 240s+
UCM[11] 0.71 0.74 0.73 0.33 0.38 0.59 0.65 0.81 0.85 1.65 1.47 240s
Taylor[2] 0.67 0.72 0.73 - - 0.56 0.62 0.79 0.84 1.74 1.53 11s
MShift[3] 0.63 0.66 0.54 0.21 0.28 0.54 0.58 0.78 0.80 1.83 1.63 600s+
NCuts[9] 0.62 0.66 0.43 0.19 0.27 0.44 0.53 0.75 0.79 2.18 1.84 600s+
EGB[15] 0.58 0.62 0.53 0.18 0.25 0.51 0.58 0.77 0.82 2.15 1.79 <1s
SF[13][14] 0.73 0.75 0.77 - - - - - - - - 0.4s

Table 4: Results on the BSDS500 test set. The best values are shown in bold.
Boundary Fop Covering PRI VOI TimeODS OIS AP ODS OIS ODS OIS ODS OIS ODS OIS

Human 0.80 0.80 - 0.56 0.56 0.72 0.72 0.88 0.88 1.17 1.17 -
LEP(Ours) 0.76 0.79 0.82 0.42 0.47 0.63 0.69 0.84 0.87 1.47 1.29 1s
MCG[12] 0.75 0.78 0.76 0.38 0.43 0.61 0.66 0.83 0.86 1.57 1.39 20s+
SCG[12] 0.74 0.77 0.65 0.35 0.42 0.60 0.65 0.83 0.86 1.63 1.43 3.5s+
ISCRA[24] 0.72 0.75 0.46 - - 0.59 0.66 0.82 0.85 1.60 1.42 240s+
UCM[11] 0.73 0.76 0.73 0.35 0.38 0.59 0.65 0.83 0.86 1.69 1.48 240s
Taylor[2] 0.68 0.72 0.74 - - 0.56 0.62 0.81 0.85 1.78 1.56 11s
MShift[3] 0.64 0.68 0.56 0.23 0.29 0.54 0.58 0.79 0.81 1.85 1.64 600s+
NCuts[9] 0.64 0.68 0.45 0.21 0.27 0.45 0.53 0.78 0.80 2.23 1.89 600s+
EGB[15] 0.61 0.64 0.56 0.16 0.24 0.52 0.57 0.80 0.82 2.21 1.87 <1s
SF[13][14] 0.75 0.77 0.80 - - - - - - - - 0.4s

5 Discussion

The success of our new algorithm shows, when learning human segmentations, it is feasible
and necessary to take human behaviors into account to find a good solution. There are lots of
human-labeled data in many fields of computer vision, so it should be worthy of investigating
related problems from the principles of human behaviors such as LEP, and simulating human
behavior to establish new algorithms.

On the other hand, we observe that the performance of our algorithm on the new integrat-
ing measure is much worse than that of human subjects. In our opinions, the reason is that
human subjects use semantic concepts unconsciously when segmenting images. They are
more inclined to merge some perceptually different regions together as the regions are parts
of one object. How to introduce semantic concepts into our algorithm is our future work.

Acknowledgement: This work is supported by the State Key Laboratory of Software
Development Environment (No. SKLSDE-2015ZX-29).
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Figure 5: Qualitative comparisons between segmentations. Boundaries are shown in green.
From left to right: images, groundtruths, segmentations of our method, MCG and SCG.
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