MCSLAM : a Multiple Constrained SLAM

Datta Ramadasan'
datta.ramadasan@gmail.com

Marc Chevaldonné?
marc.chevaldonne@udamail.fr

Thierry Chateau’
thierry.chateau@univ-bpclermont.fr

" Pascal Institute
Blaise Pascal University
Clermont-Ferrand, FR
2ISIT
Auvergne University
Clermont-Ferrand, FR

In this paper, we propose a new algorithm, named MCSLAM (Multiple
Constrained SLAM ), designed to dynamically adapt each optimization to
the variable number of parameters families (sensor pose, roughly known
objects poses and dimensions, delay between sensors, ...) and hetero-
geneous constraints (reprojection error, distance from points or edges to
object surface, acceleration...). The proposed algorithm is based on three
contributions: 1) a new Levenberg-Marquardt C++ library named LMA
and freely available EI 2) an architecture allowing a high level of flexi-
bility and performances 3) a real-time usage of a temporal spline curve
as the parametric trajectory model that provides an efficient way to add
heterogeneous constraints within the optimization.

The main idea of LMA is to provide a simple interface with a non-
intrusive mechanism of adaptation to a problem while maintaining good
performances. LMA works as a meta-program using C++ template to
analyse at compile-time (CT) the problem to optimize from a list of C++
functors. The parameters are deduced from the functors arguments and
the degree of freedom (dof) of each parameter is defined by the user. Then
LMA generates a data structure to store the functors and the parameters
in tuple according to the number of parameters families and constraints.
The resolution of the normal equations is written efficiently using a sparse
representation constructed with a set of small matrices of static sizes.
The LMA library solves the normal equations using dense Cholesky or
a sparse PCG specially designed to manage little matrices of static size. It
also implements the classical optimization tricks to be effective on little,
medium, and big size problems. LMA also implements common features
as automatic differentiation and robust cost functions.

The continuous-time representation of the trajectory is used to deal
with constraints on the motion. This allows to mix data from many un-
synchronised sensors and evolution model. To apply constraints on the
3D structure of the environment, 3D models of coarsely knowns shapes
are used. To represent the motion, we use the uniform cumulative b-spline
described by Lovegrove et al. [2] but we separate position and orientation
in two different splines and we use the Rodriguez formula to compute the
exponential and the logarithm of SO3 group. Moreover, we adapt the key-
frame based SLAM to deal with the spline: key-frames are constrained to
be on the spline. We also use every inter-key-frame poses computed by
the localization process to apply a weak constraint on the spline. A tem-
poral sliding window of 3 seconds is used to select, from the SLAM and
the IMU, the more recent data used to constrain the spline.

The MCSLAM algorithm is based on a graph composed by con-
straints, parameters and dependencies. First, the problem configuration
is analysed at compile-time to generate a specified LMA solver, whose
cost function to minimize is the sum of the constraints C dynamically

added: £ = Z,C:o lecio H p(;,k
sponding to the constraint i, p; ; the error associated to the observation k
of the constraint i and o; the estimation of the measurement error. The o;
value is specific to each constraint. Then the graph is skimmed accord-
ing to the dependencies to feed the solver with the parameters and the
constraints. Each constraint has a list of functors and each functor cor-
responds to one error term of the cost function to minimize. Moreover,
one function has to be written for each constraint: this function has two
input, the dependencies graph and the solver. Thus, each constraint has
a full access to the graph and any required data in order to fill the solver.
To achieve real-time performances, we extend the incremental reconstruc-
tion scheme described by [3] to manage the constraints. This produces an
anchorage of the optimized parameters according to the deprecated pa-
rameters. Consequently, the constraints are applied only on parameters
corresponding at the end of the reconstruction (spatially and temporally).

2
with K; the number of observations corre-

llgit.univ—bpclermom.fr/datta.ramadasan/lmal

Torcs | LMA
0.51
s | LMA
1.06
1.01
1.10
1.12
o5 | LMA
131

Circle (2 dof)
Dense

BAL (66k dof.)
Sparse

Dense Schur
Sparse Schur
Tmplicit Schur
BAL (4M dof)
Tmplicit Schur

Figure 1: (a) LMA compared to Ceres and g20 (results are in seconds). (b)
Ground truth of the second experiment. (c) Image from the sequence of
the second experiment. (d) Error in position of the SLAM using different
configuration of constraints. (e,f) IMU’s accelerometer and gyrometer
compared to the spline acceleration and orientation velocity.

Three comparatives summarized in table[T(a) are performed on prob-
lems of different sizes using the solvers g2o, Ceres-1.10 and LMA. The
first comparative is a basic problem designed to optimize the equation of
a circle. In this experiment, LMA is 4.8 times faster than Ceres and 4.3
times faster than g20. The second experiment is performed on an instance
of the dataset used in the Ceres benchmark [[1]]. Each solver is limited to
10 iterations of Levenberg-Marquardt, derivatives are numeric and cen-
tred, and the PCG is limited to 20 iterations when it’s used. On the first
instance, LMA is 2 to 3 times faster than Ceres and g2o, with a simi-
lar accuracy, using the 4 different linear solvers. The third experiment is
performed on the 35 instances of the dataset [1] with the Implicit Schur
method and shows that LMA is, on average, 2.5 times faster than Ceres,
and more accurate on 21 datasets out of 35.

Four different configurations of the MCSLAM are tested : 1) SLAM
with a constant velocity model constraint, 2) SLAM with a constant veloc-
ity model and IMU constraints, 3) SLAM with a constant velocity model
and IMU constraints and IMU’s bias optimization, 4) SLAM with spline,
constant velocity model, IMU, IMU’s bias optimization, and 3D object
constraints. The ground truth is an indoor trajectory computed from a
structure from motion algorithm. The ground truth is visible on the figure
[I(®)] in blue, and the edge model in red and an image from the camera
is shown on the figure Moreover, to highlight the robustness of the
system, we artificially stop the camera poses constraints on the the spline
during 1 second every 2 seconds. The errors in position are shown in the
figure[T(d)] Figures[I(e)]and [I(F)]shows the acceleration and the orienta-
tion velocity of the trajectory and the IMU data using all constraints.

[1] Sameer Agarwal, Noah Snavely, Steven M Seitz, and Richard
Szeliski. Bundle adjustment in the large. In Computer Vision-ECCV
2010, pages 29-42. Springer, 2010.

Steven Lovegrove, Alonso Patron-Perez, and Gabe Sibley. Spline fu-
sion: A continuous-time representation for visual-inertial fusion with
application to rolling shutter cameras. In Proceedings of the British
machine vision conference, pages 931, 2013.

(2]

[3] Etienne Mouragnon, Maxime Lhuillier, Michel Dhome, Fabien
Dekeyser, and Patrick Sayd. Real time localization and 3d recon-
struction. In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 1, pages 363-370. IEEE,

2006.



