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Abstract

We present a novel method for an automatic calibration of modern consumer Time-
of-Flight (ToF) cameras. Usually, these sensors come equipped with an integrated color
camera. Albeit they deliver acquisitions at high frame rates they usually suffer from in-
correct calibration and low accuracy due to multiple error sources. Using information
from both cameras together with a simple planar target, we will show how to accurately
calibrate both color and depth camera, and tackle most error sources inherent to ToF tech-
nology in a unified calibration framework. Automatic feature detection minimizes user
interaction during calibration. We utilize a Random Regression Forest to optimize the
manufacturer supplied depth measurements. We show the improvements to commonly
used depth calibration methods in a qualitative and quantitative evaluation on multiple
scenes acquired by an accurate reference system for the application of dense 3D recon-
struction.

1 Introduction
Time-of-Flight (ToF) sensors are widely used in many applications such as autonomous nav-
igation, 3D reconstruction and human-computer-interaction. Thanks to an adoption by the
gaming industry, ToF cameras have become reliable and affordable and are present in many
living rooms as an accessory to gaming consoles. These modern devices combine a depth
sensor with a traditional RGB sensor to form a so-called RGB-D camera.

Unlike passive 3D sensors based on stereo triangulation, ToF cameras emit light and
therefore deliver acquisitions mostly independent from lighting conditions resulting in dense,
real-time depth-maps of nearly arbitrary surfaces. The quality of the depth-maps depends on
the scene geometry and surface properties in the scene. The two main error sources are 1) in-
trinsic calibration errors and 2) a spatially varying, context sensitive error in measured depth.
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This paper tackles both error sources of a RGB-D camera system using a novel calibration
framework. The main goal of this work is to provide a highly accurate calibration with a
minimum of user interaction and without relying on a complex, specifically machined 2.5D
calibration target as commonly used in literature [7]. The developed method is generally
applicable to depth sensors which also deliver an intensity image and are rigidly connected
to a RGB camera. Popular examples of these devices are Intel Senz3D, Microsoft Kinect for
Windows v2 (K4Wv2) or the upcoming Google Tango mobile device.

In our method the features are automatically detected on a calibration target with sub-
pixel accuracy which are used in both single-camera and stereo calibration. We treat the
intensity image of the depth camera as a regular intensity camera which allows us to pa-
rameterize the depth camera using a standard pinhole model with non-linear lens distortion.
After estimating the extrinsic and intrinsic parameters of depth and RGB camera we aim at
minimizing the spatially varying depth bias which is inherently present in ToF-based depth
cameras [5]. It has been shown that this error bias depends on scene geometry, reflection
properties of the scene and position of the pixel in image space [7, 10]. Instead of directly
modeling each error distribution with heuristics, we solve the problem of depth-bias cali-
bration directly by using machine learning. In our framework we use a Random Regression
Forest (RRF) to directly infer the mapping from depth and intensity features to a depth offset,
which jointly eliminates all error sources. An overview of our method is shown in Fig. 1(a).
We show that our method outperforms existing correction techniques and improves the qual-
ity of dense 3D reconstruction.

2 Related Work
The ToF camera is an active sensor that measures the ”time of flight” of near-infrared light
(NIR) emitted by an ideally coaxial light source. The intensity of the illumination is modu-
lated to measure the depth from the phase shift between emitted and reflected light acquired
by the sensor [11]. This principle delivers depth measurements invariant to scene illumina-
tion at frame rates up to 160 fps. In the following we will discuss the drawbacks which arise
from the projective camera model as well as the active measuring principle.

The ToF camera follows the pinhole camera model which can be parametrized by intrin-
sic parameters like focal length, skew and principal point. Most ToF cameras have a wide
field of view (FOV) which adds severe non-linear lens distortion. All these camera param-
eters are determined during camera calibration (i.e. with the approach of Zhang [17]). This
homography-based camera calibration was realized in a Matlab calibration toolbox [3] and
uses a planar checkerboard pattern to find the 2D-3D correspondences. Considering the lim-
ited resolution of ToF cameras, Kahlmann et al. [8] use a slightly modified pattern for this
calibration.

Since the amplitude modulation on the emitting light source of ToF cameras is not opti-
mally sinusoidal, a periodic distance related offset occurs, namely the wiggling error. Fuchs
and Hirzinger [5] model this error as a third order polynomial. Additionally, due to different
reflection properties an intensity related error exists. On the one side low intensity measure-
ments lead to a bad Signal to Noise Ratio (SNR) and hence to random noise. On the other
side there is a relation between reflection properties of a scene and its measured depth. This
leads to a detectable offset e.g. lower reflection leads to a depth measurement closer to the
camera. An intensity based compensation of this error source has been shown by Lindner
and Kolb [12] and Radmer et al. [14].
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Belhedi et al. [2] propose a non-parametric method to compensate for the depth errors.
In contrast to previously presented methods no underlying model is assumed, but the mea-
surement volume in front of the camera is discretized and a depth offset is estimated for each
voxel in the calibration step. Since not all voxels can be hit during calibration, a regulariza-
tion term fills in the missing values. The authors only utilize the depth as input feature, in
contrast our method also makes use of the intensity image and does not require a volumetric
representation and thus no discretization of the world.

Reynolds et al. [15] proposed a Random Forest (RF) to quantify the confidence of a ToF
measurement. This RF is trained using ground truth depth together with acquired depth and
intensity features. As output it delivers a per-pixel-confidence according to each measure-
ment. In spirit, this approach is the closest to the proposed method. In contrast to predicting
the measurement confidence, our method goes one step further and directly corrects the depth
error.

Discussion During the acquisition process of ToF cameras, measurement errors originate
from many different sources. By now, there exist a variety of different calibration techniques
to estimate and calibrate each of those errors separately. Unfortunately the different errors
highly correlate which naturally makes it hard to calibrate each error on its own. In our work
we propose a method to measure and calibrate all of those errors automatically without user
interaction and the need of an expensive reference system.

(a) (b)
Figure 1: System overview (a). Using a planar target with known dimensions (shown in (b)) the system
automatically detects feature points in both the RGB and the depth image. These points are used for
a full stereo calibration and serve as ground truth 3D points for depth calibration. Please note that the
green and red circles are not part of the printed target, but depict the location of one feature.

3 Method Overview
The goal of depth acquisition is to directly measure dense, metrically correct points in a
scene, parametrized in the form of a depth-map D : Ω ⊂ R2 from a camera at [0,0,0,1]T.
Hence, the depth-map consists of pixel-wise depth measurements D(x) at x = [i, j,1]T over
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the whole image space Ω. Each depth measurement can be projected to world space by

X = D(x)
K−1x

z
(1)

z =

{
‖K−1x‖ for a perspective projection
1 for an orthographic projection

(2)

where K−1 is the inverse of the intrinsic camera matrix. The reprojection in Eqn. (1) can
be inaccurate due to two error sources which limit the depth measurement performance: 1)
an error in intrinsic camera calibration which affects the direction of the rays encoded in
K and 2) a context sensitive depth bias encoded in D(x). In the following sections we will
show how we can tackle both error sources. An overview of the framework is shown in
Fig. 1(a). In Section 4 we present our calibration framework where we introduce a method
to automatically detect the features on a circular pattern target. The target is especially
suited for cameras with rather low resolution, like in modern depth sensors. The detected
features are not only used to determine intrinsic and extrinsic parameters of RGB and depth
cameras but also serve as Ground-Truth (GT) to our depth compensation method presented
in Section 5. We treat the depth error correction as a regression problem and learn a direct
mapping between the acquired depth and intensity to the offset from the real depth using a
Random Regression Forest (RRF).

4 Geometric Camera Calibration
Geometric camera calibration serves the purpose of determining the intrinsic and extrinsic
parameters of depth and RGB camera. Since the main focus of this work is to provide a
user-friendly and fully automatic calibration pipeline for both geometric and depth camera
calibration, we utilize a proven camera calibration method of [3] in conjunction with a cir-
cular pattern target and automatic feature detection presented in the following.

Calibration Target Traditional camera calibration methods utilize a checkerboard target
with known dimensions to establish a correspondence between 2D features and 3D world
points. The accurate detection of checkerboard crossings or circular features is very inac-
curate for low-resolution cameras. Methods for calibrating depth cameras therefore usually
utilize 2.5D targets which have to be custom-built. In this work we aim to use a conventional
2D target and define feature points by a combination of multiple circular shapes printed on
a planar surface (depicted as dashed rectangle in Fig. 1(b)). Fig. 1(b) shows a cut-out of the
proposed calibration target, overlaid with the coordinate system origin and the feature point
positions (in red and green). The actual dimensions of the target are flexible and can be
adapted to the application at hand. The target feature points Xi ∈ΩT are defined on a regular
grid relative to the coordinate origin in 3D world coordinates.

Feature Extraction Our automatic feature extraction method consists of two parts: 1)
detecting the center marker and 2) iteratively detecting the circular targets, similar to the
concept of [16]. This two stage approach has the advantage that the whole target does not
have to be visible in all images, a drawback of many other calibration frameworks. The
detection of the central marker is done using the marker detection of [9] which results in the
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four corner points of the marker in image space. We estimate a homography between the
detections and the known positions in target space which allows us to transform all features
from target space to image space and determine the feature positions. The features are then
detected by correlating the image region around the estimated point positions with a known
template, warped with the estimated homography. In practice non-linear distortions in image
space make this simple approach not applicable. However, for a small image patch the
assumption of a local homography is reasonable. We therefore start the detection with feature
points in the vicinity of the center marker (depicted in green in Fig. 1(b)). After successful
detection, the search region is enlarged and the detected feature points in the neighborhood
around a new feature point are used to compute a new local homography. The estimated
feature location is again refined using template matching. This procedure is iterated until
either the borders of the target are reached or the correlation score drops below a threshold.
The feature positions are locally refined with a few iterations of the Baker-Matthews Inverse
Compositional Algorithm [1].

The output of the feature detection is a set of correspondences between the input image
and known 3D positions on our calibration target1 which can be used in conjunction with the
MATLAB toolbox of [3]. Example detection results on challenging images can be seen in
Fig. 2. With the knowledge about camera parameters at hand we are able to correct the ray
direction of Eqn. (1) with the updated values for K. In the next section we will tackle the
second error source, the context sensitive depth offset.

5 Depth Error Compensation

Time-of-Flight (ToF) cameras suffer from errors like wiggling error and reflectivity depen-
dent error as shown in detail in Section 2. While being systematic, they depend on a variety
of parameters which simultaneously influence the measurement such as scene geometry, sur-
face reflectivity, distance and orientation of the camera with respect to the scene.

Instead of explicitly modeling the depth error for the various error sources, we formulate
the non-linear mapping between input depth and intensity features to a depth offset as a
regression problem. We propose to use a modified Random Forest (RF) in a regression
setting [4] to directly calculate the offset between measured depth and GT depth. To train the
RF we have given a sample set X = {Dk,Ik}K

k=1 consisting of K depth and intensity images
from an intrinsically calibrated depth camera together with corresponding target set given
by Y = {Dk−DGT

k }K
k=1. According to the general regression formulation, the training set is

given by {θ(X ,xi),y(Y,xi)}N
i=1, where θ(X ,xi) ∈RM and y(Y,xi) ∈R. In this formulation

θ(X ,xi) is a M dimensional feature vector extracted from the depth and intensity images
and y(Y,xi) is the offset from input to GT depth. The training set is extracted at N pixel
positions xi which are randomly sampled out of X and Y .

The trained RF in our setting describes the non-linear mapping M : RM → R, where
a new feature vector θ is mapped to a predicted offset y. This mapping is learned by an
ensemble of binary decision trees {Tt}T

t=1 (T being the number of trees), each trained on a
subset of the training data. A single decision tree Tt recursively splits the given training data
into two partitions, such that the uncertainty of the target variables in the resulting subset is
minimized. In particular, each node in a tree randomly samples a set of splitting functions,

1The MATLAB code for the automatic feature detection is available at http://rvlab.icg.tugraz.at/
calibration since we believe that it can be of use for a variety of camera calibration tasks.
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each separating the data into two disjoint subsets. All splitting functions are then evaluated
according to their information gain (differential entropy). The splitting function giving the
highest gain is fixed and the data is separated into the subsets. This procedure continues until
the maximum tree depth or the minimum number of samples left is reached, resulting in a
density model for each leaf node.

After evaluating the forest for a given sample, the predicted offset y∗ is calculated as
the median over the predicted target variables. Hence, the forest gets robust against gross
outliers which usually can occur in ToF depth measurements.

In the following section we will show how the training data y(xi) = DGT(xi)−D(xi) is
generated from the images captured during geometric camera calibration.

Ground Truth Generation Having an accurate ground truth data for learning the depth
compensation is essential. Commonly used methods involve the use of an external measure-
ment system (e.g. [12, 15]) or controlled movement of the sensor system (e.g. [7]). In this
work we make use of the integrated RGB camera in modern ToF cameras together with the
proposed planar target.

For each color image where the target has been detected, correspondences between fea-
ture points in image space and their locations on the known calibration target in 3D space
are given. These are only sparse detections at the feature locations itself, but we can as-
sume the points in between to lie on the same plane. The points inside the convex hull of
all feature point positions in 3D are transformed to the depth camera coordinate system with
the known extrinsic calibration. Using the intrinsic camera parameters of the depth sensor
K and the distortion parameters, a viewing ray for each depth measurement is calculated.
Instead of undistorting the image, we distort the point locations, circumventing errors due
to an interpolation in image space. The viewing rays which lie inside the projected convex
hull are intersected with the plane defined from the high-resolution color camera. Hence, we
get a pixel-accurate GT which is orders of magnitude more accurate than the depth camera
measurement. An example detection result can be seen in Fig. 2, where the detected feature
locations in the color image are projected into the coordinate system of the depth camera.
The depth measurements inside the green area are used for training data extraction.
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(b) ToF depth image
Figure 2: Sample detection result. Feature points are localized in the RGB image (a) and projected into
the depth image (b) which has a comparatively lower resolution. The area delineated by green lines is
used for training data.
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6 Experiments

For the experimental evaluation of our calibration method we use a modern consumer depth
camera based on ToF technology, namely the Intel Senz3D. It consists of a depth camera
with a resolution of 320× 240 pixels and a RGB camera with a resolution of 1280× 720
pixels. The recommended depth range for this camera is ≈ 300 to 1000 mm. The physical
dimensions of the used calibration target are 600×900 mm, printed on white paper and glued
on a glass plate, as shown in Fig. 2. We begin the quantitative evaluation of our calibration
framework by analyzing the performance of the individual components. To that end we
compare the results of the geometric calibration routine to a known external measurement
system. We further evaluate the features we use in our RF. The performance of the depth
calibration is compared to the depth without calibration, to depth calibrated using the manu-
facturer intrinsics and distortion parameters, and to baseline methods which either focus on
the distance related error of ToF cameras (known as wiggling error) or the intensity based
error. We evaluate the depth error based on the calibration data as well as on a desktop scene
which was acquired by a high accuracy reference system.

6.1 Geometric Calibration

A key component of the presented calibration framework is the automatic feature detec-
tion and GT data generation for the subsequent depth error compensation. The accuracy of
intrinsic camera calibration and the estimation of the extrinsic camera parameters directly
influence the quality of the GT data.

For a geometric camera calibration we use our calibration method based on [3] along
with the proposed automatic feature extraction method, described in Section 4. To validate
the feature detection we intrinsically calibrate the RGB camera using 20 images of our tar-
get. The mean reprojection error of the image features after calibration was estimated to be
0.12px. To translate this value into the metric world, we assess the accuracy of estimated
camera poses by rigidly mounting the RGB-D camera to a Leica Disto D8 laser meter2. Us-
ing this setup we took 20 additional images by moving the camera system coaxial to the
optical axis of the RGB camera in the range of 40 to 150cm distance to the target. Keeping
the intrinsic parameters fixed, we estimate the extrinsic parameters (i.e. the camera pose) for
each image. The estimated camera pose enables us to calculate the distance between any
point on the calibration target plane to the camera. Additionally, for each image we took a
GT measurement using the laser meter. Over the complete range the deviation of the camera
pose with respect to the laser measurement is 0.48±0.37 mm.

This experiment shows that the camera pose estimation is at least one order of magnitude
more accurate than the typical accuracy specified by the manufacturers of ToF cameras and
deems it feasible to be used in our GT data creation detailed in Section 5.

6.2 Features for Depth Calibration

The random forest trained with data from the calibration process solves a regression problem
to find a mapping from a feature vector θ(X ,x) to a depth offset y(Y,x). The feature vector
used throughout our experiments is solely based on features from the intensity and depth

2The accuracy according to the manufacturer is 1/32 inch.
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Figure 3: Depth error distribution in training data. The first row shows the error distribution in images
space in the captured training set, where (a) mean and (b) standard deviation of the discrepancy between
depth camera and ground truth depth are shown. (c) shows the number of times a specific pixel was
added to training data. The second row shows the error along the measured depth with the standard
camera output (d), after polynomial fitting of the depth (e) and after calibration using our learning
based approach (f).

image of the depth camera and is defined as

θ(Y,x) =
[

D(Nx),I(Nx),var(D(Nx)),
∂ 2

∂x,y
D(x),

∂

∂x
D(x),

∂

∂y
D(x),r(x)

]
, (3)

where Nx represents patches in the n× n neighborhood around point x. These features are
useful to calibrate depth offsets according to the measured depth (wiggling error, depth er-
ror) and to the measured intensity (intensity related error). To further reduce the influence
of statistical noise we use the variance and the first and second derivatives of depth as addi-
tional features. This is combined with the pixel position encoded as Euclidean distance r(x)
to the principal point (pixel related error). In Fig. 3 we evaluate the distribution of the error
present in the training data. As can be seen, there is a bias towards the edges of the image, in
mean and standard deviation. The resulting dimension of our feature vector is M = 2n2 +5.

Figure 4: Relative Feature impor-
tance of the RF across the forest lev-
els.

Feature Importance During training, the RF selects
among the presented features the most relevant to the task
at hand. The importance of each feature can be inferred
from how often it has been selected. We analyzed the
selected features of the proposed random forest for each
depth of the tree and visualize it in Fig. 4.

The most important features are derivations of the in-
put depth followed by the position in the image and the
raw depth and intensity patches. In the early nodes of
the tree, the first and second derivatives are most impor-
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tant, while the raw pixel values become more important
for higher tree depths.

In our experiments we use a patch size of n = 3. With the defined feature vector the RF
is trained using 16 trees with a maximum tree depth of 8. For training we extracted ≈ 2.5
mill. point correspondences from 180 images. The forest is trained using and train-test split
of 80/20% of the extracted points.

6.3 Depth Calibration

To evaluate the accuracy of our method we compare the calibration result using the RF to the
manufacturer calibration (S3D-calib) and to fitting for depth error compensation [5, 6, 7, 14],
where a polynomial function is fitted either to the measured depth (D-Fit) or the intensity
(I-Fit) separately. For fitting we deliberately use the same train-test split as for the RF.

The Test Set result is visualized in Fig. 3(d-f) and Tab. 1. In this evaluation we show
the performance of the depth calibration using our feature selection in an RF compared to
polynomial fitting methods. After calibration by polynomial fitting for depth and intensity
values, the mean error over the whole training set is reduced to a minimum. However since
the errors of the ToF measurements are non linear and highly connected to each other the
intensity and pixel related errors can not be removed by a fitting in depth and vice versa.
In our approach we take a variety of features into account which combine depth, intensity,
variance, gradients and pixel position. This drastically reduces the standard deviation of the
error.

We further compare the methods on a real desktop scene. The GT measurement is gen-
erated using a Structured Light (SL) scanner which consists of two 4MP intensity cameras
and one projector. The depth uncertainty at the given baseline is 1.2 mm. The acquired Desk
Scene is selected to incorporate a high texture variation. Since the utilized depth camera has
a depth range of ≈ 300 to 1000 mm the scene size is chosen appropriately. We compare the
different methods both on single ToF acquisitions as well as full 3D reconstructions using
the KinectFusion framework of Newcombe et al. [13] (named kFusion in the following),
where a series of 70 depth images is integrated into a volumetric representation. The image
sequence is fed into the kFusion algorithm before and after the our depth calibration. The
results of the fitting compared to our calibration on the Test Set as well as the Desk Scene are
shown in Fig. 5 and Tab. 1.

Test Set Desk Scene Desk Scene kFusion

D I-Fit D-Fit OURS D S3D-calib I-Fit D-Fit OURS D S3D-calib OURS

RMSE(E) 160.01 40.24 32.03 16.10 168.48 158.23 47.45 46.09 39.83 205.25 167.61 88.60
Ē -155.51 -0.33 -0.12 -0.02 -141.19 -139.33 -23.40 -18.27 2.65 -187.05 -149.30 -52.18
σ(E) 37.70 40.24 32.03 16.10 91.92 74.99 41.67 42.32 39.74 84.51 76.179 71.61

Table 1: Accuracy evaluation. The depth error is measured as RMSE(E), mean error Ē and standard
deviation σ(E) to GT in mm. The accuracy is evaluated for the Test Set of the recorded samples from
the training data, a recorded Desk Scene and the 3D reconstruction of 110 images of the Desk Scene
using the kFusion framework. The error of our method is compared to the uncalibrated camera output
(D), the camera output calibrated with the values provided by the manufacturer (S3D-calib), to error
fitting to ToF intensity (I-Fit)and to error fitting to depth (D-Fit).
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(a) Error (D) (b) Error (D-Fit) (c) Error (OURS)

(d) GT (e) kFusion S3D-calib (f) kFusion OURS
Figure 5: Desk Scene Evaluation. The first row shows the color-coded error to GT(d) for one depth
acquisition. It compares the uncalibrated camera output D (a), the camera output corrected with depth
dependent polynomial fitting D-Fit (b) to our method OURS (c). Regions where no depth data is
available are marked with zero. The second row shows the rendered kFusion output of an image series
of the Desk Scene with magnified regions of interest.

7 Conclusion

We proposed a method for the fully automatic calibration of consumer ToF RGB-D cameras.
In a first step the intrinsic parameters of both the RGB and the depth camera are calibrated
and the relative camera pose is estimated. For this calibration we used a novel calibration
target, where the feature points are automatically detected at sub-pixel accuracy. In the
second step the errors of ToF depth measurements are calibrated. Since there exist a variety
of error sources which are highly connected and can not be estimated by simple functions
alone, we utilize an RF in a regression setting to optimize for all error sources and their
connections at once. In our evaluations we show that our calibration method delivers highly
accurate calibration results compared to the manufacturer settings and to standard fitting
techniques as used in other works. We additionally show the improved quality for dense 3D
reconstruction.
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