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Abstract

Detecting small objects in images is a challenging problem particularly when they
are often occluded by hands or other body parts. Recently, joint modelling of human
pose and objects has been proposed to improve both pose estimation as well as object
detection. These approaches, however, focus on explicit interaction with an object and
lack the flexibility to combine both modalities when interaction is not obvious. We there-
fore propose to use human pose as an additional context information for object detection.
To this end, we represent an object category by a binary star model and train regression
forests that localize parts of an object for each modality separately. Predictions of the two
modalities are then combined to detect the bounding box of the object. We evaluate our
approach on three challenging datasets which vary in the amount of object interactions
and the quality of automatically extracted human poses.

1 Introduction

Object detection has seen considerable success, but the case of medium and small sized
everyday objects still remains an open problem [16]. Although such objects appear at low
image resolutions, they often occur in the context of human interactions. However, this intro-
duces new challenges as objects are heavily occluded and undergo large pose and appearance
variations during the process. Nevertheless, the context of human-object interactions can be
incorporated as has been proposed by recent methods [2, 10, 11, 12, 17, 19]. For instance,
[2] extends a deformable part model (DPM) [5] to model spatial relations between body
parts and parts of objects. This approach, however, only works well for images showing the
instant of human-object interaction, i.e., when a human is closely in contact with an object.
For images without an interaction, pose and objects are independently modelled, e.g., by
having several models including either object or pose, or both together. In such cases, the
additional information from human context is therefore not exploited.

In this work, we propose an approach that includes human pose as an additional context
for object detection. Our approach is not limited to images showing explicit human-object
interactions, but also works for general images where pose can be inferred. For instance, a
pose related to emptying a tin indicates that a tin opener might be close although the person
does not use the tin opener at this moment. To this end, we model objects by a part based
model and predict locations of parts from both image and pose data using regression forests.

In our experiments, we show that jointly modelling human and object as in [2] leads
to suboptimal performance for object detection. On the other hand, our approach has the
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Figure 1: Detecting teapots: (a) Input is an image and automatically extracted human pose.
(b) Object keypoint unaries based on appearance features and (c) Keypoint unaries based on
human pose features. Note the reduced keypoint localization capability. (d) Linear combi-
nation of unaries. (e) Inferring keypoints using the pictorial structures model. (f) Regressing
object bounding box using the inferred keypoints.

flexibility to incorporate potential gains from either modality. We evaluate our approach
on three datasets [7, 12, 14] that have varying quality of automatically extracted 2d or 3d
human pose. Overall, we show that human pose can be successfully used to improve object
detection performance. Further, we investigate the effect of various human pose estimation
techniques on object detection accuracy. An outline of the approach is presented in Figure 1.

2 Related Work

Combining humans and objects together to address various problems in computer vision has
received considerable attention in the recent past. [3] builds a discriminative model for action
classification by reasoning about spatial co-occurrences of body parts and objects. In [13]
a weakly supervised approach is proposed for action classification that does not require an-
notations of objects and humans in training images. Human context has also been used to
deduce object functionality either by inferred [20] or by hypothesised human pose [11].

As for methods relating to object detection, [10] proposes a generative model that com-
bines body part trajectories and object appearance. However, it uses strictly handcrafted
metrics to tap human motion information which can be difficult to adapt to realistic actions.
[19] learns a discriminative random field model by representing body part location priors as
nodes and spatial relations between body parts and objects as edges. However, mixture mod-
els are treated independently resulting in poor performance for complex data. In this regard,
[17] introduces a coarse-to-fine hierarchical grammar for a more concise representation of
mixture models. Introducing phraselets, [2] extends a DPM [6] to improve the quality of
mixtures by clustering training examples based on their relative locations. The method re-
ports state-of-the-art results for jointly reasoning about pose estimation, action classification
and object detection.
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3 Object Detection

As illustrated in Figure 1(f), we represent an object by a set of descriptive keypoints K = {k;}
where k; encodes the image location of the i keypoint. As in the pictorial structures
model [6], the spatial relations between them are defined by a directed graph E and the
prior on any keypoint configuration is given by

p(K) = [T wij(kik)), (1)

ijEE

where the binary potentials y;;(k;, k;) model spatial relations between two keypoints k; and
k;. Given an observation D, an optimal configuration is estimated by the maximum of the
posterior distribution

p(K[D) e p(DIK) - p(K)
o< [Toik) - [T wij(kik)) 2)

i.jEE

While we use 3-mixture Gaussians as binary potentials to model relative keypoint offsets
in the star structured graph E for efficient inference as in [6], our work focuses on extract-
ing more discriminative unary potentials ¢;(k;) derived from appearance and human pose
features. The unary potentials will be discussed in Section 4.

Since we adhere to the PASCAL-VOC protocol for evaluation, we have to predict a
bounding box (x1,y1,x2,y2) from the inferred keypoint configuration XC. To this end, we
use a mixture of linear least squares regressors and predict each parameter of the bounding
box independently. For the regression, we normalize keypoint locations such that the mean
becomes zero and variance one. We use a mixture of 3 regressors, each of which is trained
on a cluster of training data. As for the feature vector for clustering, we add the aspect ratio
to the normalized keypoints resulting in a (2|KC| + 1) dimensional vector. The aspect ratio is
calculated using the smallest rectangle enclosing all keypoints.

The inference procedure results in multiple overlapping detections for each object in-
stance. We therefore use a greedy approach to eliminate redundant detections. Given an
image, we get a set of detected bounding boxes and their respective scores p(K|D). The set
is sorted according to the score and all bounding boxes that have an intersection-over-union
(IoU) ratio over 0.5 with a higher scoring bounding box are discarded.

4 Keypoint Regressors

The unary potentials ¢;(k;) in Eqn (2) are modelled by probabilities over keypoint location
k;. The probabilities are estimated from two modalities, namely the object appearance Dy
and the human pose Dp, i.e.

¢;(k;) = p(ki|Da, Dp). 3)
As random forests are used as regressors, we introduce them briefly in Section 4.1. Sec-

tions 4.2, 4.3 and 4.4 then present unary potentials based on individual features and their
combination.
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4.1 Random Forests

As in [8], we use random forests for object detection. However, instead of voting for the
center of the bounding box we use random forests to predict keypoints of an object and infer
the object bounding box as described in Section 3. A tree T in a forest T is built from a
random subset D of the training data. For each training image, features Fp are extracted.
For training a tree, the set D is recursively divided into two subsets Dy and [D; using a binary
split function {*(Fp) — {0,1}. The split function, which maximizes the information gain
g(&), is chosen from a pool of randomly generated split functions:

= argrgnax g(¢) “@
s0)=am)— ¥ POlym ), )
s€{0,1} |D|

where H is randomly chosen to be the class entropy or the squared error of the predicted
mean [8]. The best split function is stored at the node and the training continues recursively
until the maximum depth of the tree is reached or the number of samples in a node falls
below a threshold. Incoming training data ID is stored at the leaves.

4.2 Appearance Features

We first consider the case when keypoints are predicted from image data. In this case, an
observation D consists of a set of image patches. The image features Fp are similar to [8],
i.e., they consist of 15 feature channels: 6 color channels obtained by the Lab color space
processed by a 5 X 5 min- and max- filter and 9 gradient features obtained by 9 HOG bins
using a 5 x 5 cell and soft binning.

To train a forest for each keypoint, patches are sampled from training images where
patches within a radius of 100 pixels are considered as positive examples and as negative
examples otherwise. Each patch is further augmented with a binary class label ¢ and in case
of a positive patch the scale s of the object and the offset d to the keypoint is also stored. The
splitting functions used are pixel comparisons as in [8]:

0 if Fp(p)—Fpla) <7,
1 otherwise

gy(FD) = { (6)

where parameters ¥ = (p,q,/, ) are described by coordinates p and q within the patch, the
selected feature [ € {1,2,---,15} and a threshold 7. For selecting the splitting functions,
we use either the entropy for classification or the squared error of the mean predictor for
regression in Eqn (5):

Heias(D) = = Y p(c|D) log(p(c|D))

2
1

Hregr(]D)) = m Z
D

eDt

1
dp——— Y dp
|ID)+‘ DeDt

(N

where D7 is the set of positive patches. At the leaves, class probabilities p(c|L), distributions
of the offset vectors with respect to a quantized scale § and keypoint class c, i.e. p(d|c,$,L),
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are stored. The unary potential based on appearance for a given scale § is then defined by

¢z(l7 Z

7— p y|67§7LT) 'p(C|LT)v (8)
yeQ ‘ | T<T;

where 7; is the forest trained for the i’ keypoint and Q is a set of locations in the image.

In contrast to [8], we do not scale training examples to a fixed object size since this
requires performing object detection over several scaled versions of the test image. Instead,
we store the scale of the objects in training images in the leaves and process a test image
at the resolution as is. The unaries ¢7(k;,$) are therefore modelled for pixel location k;
and scale §. The keypoint configuration K is then inferred as per Eqn (2) for each scale
independently.

4.3 Human Pose Features

When the keypoints are predicted from automatically extracted 2d or 3d human pose, the
pose features Fp are based on joint locations j,, as in [18], i.e., for all joint combinations
the Euclidean distance between two joints is computed and for all quadruples of joints the
normal plane feature and the velocity feature are used.

To train a forest for each keypoint, training images with the object of interest are con-
sidered as positive examples and as negative examples otherwise. For each image, pose is
augmented with a binary class label ¢. The positive examples are further augmented with
scale s of the object and offsets d,, from all joints to the keypoint. The splitting functions are
defined by

0 if fp<rt,

SrFp) = {1 otherwise ©
where fp is a randomly chosen pose feature. The splitting functions are selected as in
Eqn (7).

Besides class probabilities p(c|L), the distributions of offset vectors with respect to a
quantized scale § and keypoint class ¢ for each joint m, i.e., p;(dy|c,$,L), are stored at the
leaves. The unary potential based on pose for a given scale § is then defined by

Z

jm|C,§,LT)'p(C|LT), (10)
‘T| TeT

where 7; is the forests trained for the i’ keypoint and M is the number of joints.

4.4 Combining Appearance and Pose

The unary potential in Eqn (2) is a linear combination of the filtered unaries discussed in
Sections 4.2 and 4.3:

0i(k;,§) = (K(oa) =9 (ki) + o (K(0p) * ¢/ (ki,5)) (11)

where * represents the convolution operation and ¢ is the standard deviation for the Gaussian
blur kernel K. Since the human pose can only provide a rough prior for the location of an
object class but is insufficient for accurate object localization, op > c4. The parameters «,
o4 and op are estimated by cross-validation.
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S Experiments

We evaluate the proposed approach on three datasets: ETHZ-Activity [7], CAD-120 [12]
and MPII-Cooking [14]. Human pose is inferred in all three datasets using different meth-
ods. ETHZ-Activity uses a model based method to extract 3d joint locations of the upper
body, CAD-120 uses the OpenNI SDK to extract 3d full body joint locations and MPII-
Cooking uses a pictorial structure model to extract the 2d joint locations for the arms. The
datasets collectively represent a rich variety of human-object interactions, e.g. elementary
interactions are captured in ETHZ-Activity, multi-object interactions in MPII-Cooking and
CAD-120 also captures varying viewpoints. There is also a diversity in objects ranging from
large to small and from rigid to deformable. The amount of occlusion also varies and the
objects are sometimes barely visible. Figure 2 shows some cropped representative images.
We manually labelled' 5 keypoints for each object in the three datasets for every 10/ frame
of the training data.

For evaluation, we use the PASCAL-VOC measure [4] that considers a detected bound-
ing box as true positive when the IoU ratio with the groundtruth bounding box exceeds 0.5.
Multiple detections overlapping with a true positive are counted as false positives. We re-
port area under the precision-recall curve (AUC) where the precision at any recall level r is
replaced by the maximum precision measured at recall levels exceeding r as in [4].

We present implementation details in Section 5.1 followed by the evaluation on the three
datasets in Sections 5.2— 5.4.

5.1 Implementation Details

Random Forests: A forest consists of 4 trees with a maximum depth of 25. A tree based
on appearance features is trained with 100,000 positive and negative 16 x 16 sized image
patches each and contains at least 20 samples in a leaf. At each node, a pool for splitting
functions is generated by randomly choosing 10 thresholds 7 and 100 combinations for other
parameters in Y. A tree based on human pose features is trained with all positive and neg-
ative examples and contains at least 10 samples in a leaf. The pool of splitting functions is
generated by randomly choosing 80 parameters and 8 thresholds. The binary potentials in
Eqn (2) are modelled by a mixture of 3 Gaussians.

Setting parameters: The proposed method has three parameters as per Eqn (11). We set
these parameters by grid search on the validation dataset which was obtained by splitting the
training data in half. Generally, we found that the parameters are stable across several splits
of the same dataset. In case of several splits, we therefore estimate the parameters on the
first split and use the same for the rest.

5.2  MPII Cooking Dataset

The dataset contains two cooking activities performed by 12 actors. Since the dataset does
not provide bounding box annotations for objects, we use the object classes that have been
used in [15] for object discovery. We take all frames where the objects are annotated. This
gives a subset of the dataset [14]. On this dataset, we perform a 7 fold cross validation as

! Annotations can be found at http://ps.is.tue.mpg.de/person/srikantha


Citation
Citation
{Gall, Fossati, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2011{}

Citation
Citation
{Koppula, Gupta, and Saxena} 2013

Citation
Citation
{Rohrbach, Amin, Andriluka, and Schiele} 2012

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M  {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M  {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Srikantha and Gall} 2014

Citation
Citation
{Rohrbach, Amin, Andriluka, and Schiele} 2012

http://ps.is.tue.mpg.de/person/srikantha

SRIKANTHA, GALL: HUMAN POSE AS CONTECT FOR OBJECT DETECTION 7
Table 1: AUC measures for the MPII dataset.

[ class | Appr. | Pose [ Gall[8] | Desai[2] ][ Concat. | PoseObject [[ Comb. |
bowl 0.25 0.15 0.17 0.07 0.02 0.15 0.27
bread 0.50 0.45 0.30 0.20 0.13 0.29 0.60
pan 0.20 0.20 0.34 0.22 0.14 0.21 0.23
plate 0.51 0.48 0.54 0.22 0.49 0.42 0.51
grater 0.13 0.02 0.15 0.03 0.03 0.13 0.14

squeezer 0.33 0.22 0.35 0.07 0.21 0.33 0.35
tin 0.16 0.07 0.11 0.14 0.05 0.03 0.16
spiceholder 1.00 0.15 1.00 0.60 0.92 0.15 1.00
average 0.38 0.22 0.37 0.19 0.25 0.21 0.41

in [14]. While training the proposed method on one split took 40hrs on a 6-core 3.2GHz
machine, running [2] took 72hrs in the same setup.

The AUC measure for each object class averaged over all 7 splits are given in Table 1.
We first compare our approach based on appearance and pose features (Comb), which is
described in Section 4.4, to only one of the two modalities, namely appearance (Appr) and
pose (Pose), which are described in Section 4.2 and Section 4.3, respectively. Although
the pose features perform worse than the appearance features, the combination improves the
accuracy of the appearance features. While we train a forest separately for each modality, we
also compare to an approach where a single forest is trained on a concatenation of appearance
and pose features (Concat). In this case both splitting functions Eqn (6) and Eqn (9) are used
in a single tree. The accuracy of this approach, however, drops sharply in contrast to the
appearance features.

We also compare our method to the two most related approaches. In [8], Hough forests
are used for object detection. While our approach uses a star model for keypoints for the ob-
jects as described in Section 3, [8] uses a star model for a single keypoint. When comparing
it with our approach using only appearance features, we observe that the multi-keypoint is
only slightly better than the single-keypoint setup. The method [2] combines human pose
estimation and object detection. We train the method on the training data with estimated
human pose and annotated keypoints for the objects. The approach actually performs worse
than the pose features. We therefore also implemented the approach using random forests
(PoseObject) by using appearance based features and using the joints of the human pose as
additional keypoints. The results are also worse than the pose features. In order to analyse
if the reduced accuracy stems from the additional pose estimation, which is not performed
by our approach since we use the estimated human poses provided by the dataset [14], we
evaluated the impact of the chosen pose estimation method for our approach. We therefore
trained a pose estimator [ 1] on the separate training set for pose estimation [14] and estimated
the poses on both our training and test data. Using the poses estimated by the approach [1]
did not change the object detection accuracy, which remained 0.41. This indicates that it is
not the pose estimation that results in a poor performance, but the combination of objects
and pose as proposed in [2] is not flexible enough to model object-pose relations that are not
limited to the moment of an interaction.

We additionally investigated if it is important that the poses for training and testing are
estimated by the same method for human pose estimation. We therefore used our approach
originally trained on the poses provided by [14] and only replace the poses for the test data.
When using [1] for estimating the human pose on the test data, the accuracy slightly drops
from 0.41 to 0.40, showing that the approach can be trained and tested with different methods
for human pose estimation. We also used the human poses obtained by [2] on the test data.


Citation
Citation
{Gall, Yao, Razavi, Vanprotect unhbox voidb@x penalty @M  {}Gool, and Lempitsky} 2011{}

Citation
Citation
{Desai and Ramanan} 2012

Citation
Citation
{Rohrbach, Amin, Andriluka, and Schiele} 2012

Citation
Citation
{Desai and Ramanan} 2012

Citation
Citation
{Gall, Yao, Razavi, Vanprotect unhbox voidb@x penalty @M  {}Gool, and Lempitsky} 2011{}

Citation
Citation
{Gall, Yao, Razavi, Vanprotect unhbox voidb@x penalty @M  {}Gool, and Lempitsky} 2011{}

Citation
Citation
{Desai and Ramanan} 2012

Citation
Citation
{Rohrbach, Amin, Andriluka, and Schiele} 2012

Citation
Citation
{Dantone, Gall, Leistner, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2013

Citation
Citation
{Rohrbach, Amin, Andriluka, and Schiele} 2012

Citation
Citation
{Dantone, Gall, Leistner, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2013

Citation
Citation
{Desai and Ramanan} 2012

Citation
Citation
{Rohrbach, Amin, Andriluka, and Schiele} 2012

Citation
Citation
{Dantone, Gall, Leistner, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2013

Citation
Citation
{Desai and Ramanan} 2012


8 SRIKANTHA, GALL: HUMAN POSE AS CONTECT FOR OBJECT DETECTION
Table 2: AUC measures for the ETHZ Activity dataset.

[ class [ Appr. [ Pose H Gall [8] [ Desai [2] “ Concat. [ Comb. ]
brush 0.37 0.10 0.24 0.51 0.20 0.46
calculator 0.98 0.70 1.00 0.84 0.32 0.98
camera 0.77 0.80 0.74 0.79 0.72 0.93
headphone 0.42 0.43 0.25 0.64 0.13 0.47
marker 0.09 0.02 0.02 0.08 0.06 0.09
mug 0.25 0.13 0.30 0.54 0.05 0.30
phone 0.33 0.02 0.05 0.07 0.01 0.33
puncher 0.74 0.08 0.78 0.64 0.30 0.76
remote 0.24 0.05 0.33 0.10 0.15 0.29
roller 0.45 0.08 0.48 0.68 0.14 0.51
teapot 0.42 0.36 0.51 0.46 0.36 0.42
videogame 0.48 0.12 0.40 0.63 0.42 0.52

[ average [ 046 [ 024 J] 042 [ 050 [ 023 [ 051 |

Even in this case, the accuracy of 0.39 is still better than using the appearance features only.

5.3 ETHZ Activity Dataset

The ETHZ-activity dataset contains 143 sequences where 6 subjects interact with 12 different
objects. For evaluation, we perform 6 fold cross validation for each of the 12 objects. As a
preprocessing stage, we normalize all images for lighting conditions using [9].

The results are reported in Table 2. They are similar to the MPII cooking dataset. The
appearance features outperform the pose features, but the pose features perform better for
the classes camera and headphone. Our proposed combination outperforms each of the
modalities and the concatenation of the two features. The method [8] performs in average
worse than the PS model with appearance features. The approach [2] performs better for
this dataset and achieves a higher accuracy than the pose or appearance features, but our
combination still performs better on average.

5.4 CAD 120 Dataset

The CAD-120 dataset contains 120 sequences of 10 different high level activities performed
by 4 subjects. For evaluation, we perform a 4 fold cross validation for each of the 10 objects.
It must be noted that while most classes have a sufficient amount of training data, it is not the
case with classes book and remote resulting in all object detectors to fail. Also, the human
pose extracted from OpenNI SDK not only has noisy joint locations specially for hands and
legs, but also consists of missing joints due to low detection confidence or frequent occlusion.
Missing joint locations are handled by assigning them to a default value of zero.

The results are reported in Table 3. The pose features perform poorly on the dataset due
to low quality of estimated human poses. In particular, arms are often wrongly estimated as
shown in Figure 2. Nevertheless, using pose features in addition to the appearance features
improves accuracy. As on other datasets, the method [8] performs worse than the keypoint
approach with appearance features on average. The accuracy of the approach [2] is similar to
the accuracy of the concatenated features, which is lower than our approach with appearance
features.
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Table 3: AUC measures for the CAD-120 dataset.

[ class | Appr. | Pose [ Gall[8] | Desai[2] | Concat. || Comb. ]

book 0.00 0.00 0.00 0.03 0.00 0.00
bowl 0.69 0.17 0.68 0.17 0.48 0.69
box 0.60 0.10 0.55 0.03 0.27 0.60
cloth 0.03 0.00 0.02 0.12 0.00 0.03
cup 0.24 0.02 0.26 0.12 0.03 0.24
medicinebox 0.35 0.17 0.32 0.69 0.39 0.40
microwave 0.15 0.15 0.13 0.30 0.10 0.20
milk 0.75 0.30 0.71 0.61 0.69 0.75
plate 0.25 0.02 0.26 0.03 0.03 0.25
remote 0.00 0.00 0.00 0.00 0.00 0.00

[ average [ 031 [ 009 ] 020 [ 021 [ 020 [ 032 |

6 Conclusion

In this work we have presented an approach that combines two modalities, namely image
appearance and human pose, for object detection. We have evaluated the approach on three
challenging datasets that contain small objects that are often occluded during human-object
interaction. Our experiments not only showed that human pose improves an appearance
based object detector irrespective of the underlying pose estimation technique, but also that
the proposed combination of a separate forest for each modality outperforms the concatena-
tion of features or a joint model for human pose estimation and object detection.

Acknowledgements: We thank Umar Igbal for providing human poses on the MPII-Cooking
dataset and DFG Emmy Noether program (GA 1927/1-1) for providing financial support.
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