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Abstract

Feature selection is one of the well known dimensionality reduction methods that ef-
ficiently describes the input data by removing irrelevant variables and reduces the effects
of noise to provide good prediction results. In this paper, we propose a feature selection
method by integrating dictionary learning and low-rank matrix approximation and apply
it to image classification. The objective function finds a subset of features by preserving
the reconstructive relationship of the data. This is achieved by minimizing the within-
class reconstruction residual and simultaneously maximizing the between-class recon-
struction residual. Simultaneously, the l2,1-norm minimization on projection matrix is
applied to jointly select the most relevant and discriminative features. The combination
of low-rank approximation and Fisher discrimination dictionary learning, leads in more
compactness within the same class and dissimilarity between different classes. As a re-
sult, even a simple classifier like KNN would perform surprisingly well and classify data
accurately. Our proposed method is extensively evaluated on different benchmark image
datasets and shows superior performance over several feature selection methods. The
experimental results together with the theoretical analysis validate the effectiveness of
our method for feature selection, and its efficacy for image classification.

1 Introduction
In many areas, such as computer vision and pattern recognition, data are characterized by
high dimensional feature vectors. If these vectors are processed directly, it usually leads
to difficult pattern recognition task because of the curse of dimensionality. However, in
practice, only a small subset of features is really important and discriminative. So, for the
efficient processing of a high dimensional feature, its dimensionality has to be reduced with-
out a loss in the original properties. In literature, there are mainly two distinct ways for
dimensionality reduction: feature extraction and feature selection (FS). Feature extraction
transforms features form high dimensional patterns space into a lower space by combining
several original features, while FS chooses a subset of features by eliminating the irrelevant
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and redundant features based on certain criteria [28]. The fundamental part of FS is to deter-
mine a minimal feature subset, which can efficiently describe the input data. This problem is
essentially a combinatorial optimization problem which is computationally expensive. Most
of the traditional FS algorithms address this issue by evaluating the importance of each fea-
ture individually and selecting top-ranked features one by one. However, these techniques
fail to provide any guarantee of global optimality [28]. Consequently, the correlation among
features is neglected [31]. As a solution, researchers introduced joint FS by taking into ac-
count the relationship of different features. For instance, Cai et al. [5] proposed a two-step
FS algorithm by incorporating spectral regression and l1-norm regularization.

Recently, sparsity regularization in dimensionality reduction has been widely investi-
gated and also applied into FS studies. l1-SVM was proposed to perform FS using the l1-
norm regularization that tends to give sparse solution [2]; that was further improved [26]
by combining both l1-norm and l2-norm to form a more structured regularization. Nie et
al. [17] proposed a FS method with emphasizing joint l2,1-norm minimization on both loss
function and regularization. Yang et al. [31] combined the manifold learning and l2,1-norm
minimization into joint FS and proposed an unsupervised FS algorithm. Most recently, Yan
et al. [28] introduced the sparse representation-based classification (SRC) [27] measurement
criterion into FS and designed a joint sparse discriminative FS (JSDFS) method.

The so-called JSDFS method [28] achieves impressive results compared to other FS
methods. Based on the assumption of SRC, their method selects a subset of features which
minimize the within-class reconstruction residual and simultaneously maximize the between-
class reconstruction residual in the subset of selected features. Nonetheless, the complexity
of SRC can be very high due to using all the training samples and the discriminative infor-
mation in the training samples is not sufficiently exploited by such a naive method [30]. As
a result, the reconstructive relationship of samples could not be persevered well and the se-
lected features are not discriminant enough. To overcome the drawbacks associated with the
SRC algorithm, in this paper we propose a new FS method by learning a smaller-sized dictio-
nary from the given training images while maintaining the sparse reconstruction relationship
among samples. The main contributions of this paper are:

• Our FS method integrates dictionary learning (DL) and low-rank (LR) approxima-
tion to preserve the reconstructive relationship of data. Specifically, we formulate FS
problem under LR dictionary learning with Fisher discrimination regularization.

• Optimizing the training samples from each class to be LR, reduces the diversity across
items within each class which may affect the representation power of dictionary. How-
ever, incorporating Fisher discrimination on both class-specific representations and
sparse coefficients provide enough discriminating ability into our framework. The rep-
resentative bases learned by the proposed method are encouraged to be close within the
same class, and far between different classes. Hence, we can achieve good accuracy
on image classification, even with a simple classifier such as KNN or SVM.

• Our proposed method can preserve the intraclass compactness and interclass separa-
bility much better, compared to similar methods. As a result, the useful features can be
preserved, while the irrelevant ones would be discarded during the projection process.

Extensive experimental results together with the theoretical analysis validate the effective-
ness of our method for FS, and its feasibility of being applied to image classification task.
The remainder of this paper is organized as follows. We first present some background in
section 2. The proposed FS method is introduced in section 3. The experimental results on
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benchmark datasets are conducted in section 4, followed by discussions. Finally, we provide
concluding remarks in section 5.

2 Background
Recently, Yan et al. [28] introduced SRC-based measurement criterion into FS and designed
a joint sparse discriminative FS method. Considering the decision rule of SRC, their objec-
tive function aims to find a subset of features, whose components could be well approxi-
mated by the linear combination of other components in the same class and this is achieved
by minimizing the ratio of within-class reconstruction residual to between-class reconstruc-
tion residual in the subset of selected features. Although they can achieve promising results
compared to other FS methods, it is well-known that SRC suffers from major drawbacks
such as high computational complexity and low discriminativity of sparse coefficients. Also,
noise and trivial information can make it ineffective [30]. More importantly, since the sparse
coefficients and naive dictionary are not discriminative, the reconstruction scatter matrices
would not preserve the reconstructive relationship of data well. Hence, the projection matrix
obtained by minimizing their ratio is not optimal either, which means the selected features are
not discriminant enough. These problems can be addressed by learning properly a dictionary
from training samples. The sparse coefficients and the dictionary obtained by supervised DL
methods are significantly more discriminative compared to those of SRC [30].

In the recent years, DL for sparse representation has attracted much attention and has
been successfully applied to a variety of computer vision tasks. Unsupervised DL meth-
ods, do not utilize class information of training samples and their goal is to minimize the
reconstruction error [29]. Although these methods can achieve promising results in image
restoration [1], they are not advantageous for image classification. With the class labels of
training samples available, the supervised DL methods exploit the class discrimination in-
formation, which results in better classification performance [29]. Most of the supervised
DL methods learn such an adaptive dictionary mainly in two ways: either directly forcing
the dictionary, or the sparse coefficients to be discriminative (usually through simultane-
ously learning a classifier) to promote the discrimination power of the dictionary [11]. In the
former group, multiple or category-specific dictionaries are learned to promote discrimina-
tion between classes. In contrast, in the latter, discrimination is achieved by incorporating
discriminative terms such as linear predictive classification error [32] and label consistency
constraint [11] into the objective function.

Different from the most of class-specific DL methods, Yang et al. [30] introduced Fisher
discrimination both in the sparse coding coefficients and class-specific representations which
would further enhance the discrimination of the dictionary. The discrimination capabil-
ity of their method, Fisher discrimination dictionary learning (FDDL) originates from two
facts. First, each sub-dictionary is trained to have good representation power to the sam-
ples from the corresponding class, but have poor representation power to the samples from
other classes. Second, the sparse coefficients are made discriminative through minimizing
the within-class scatter and maximizing the between-class scatter of them. Both of these
properties make FDDL a good choice for finding the discriminative sparse coefficients of
training samples. Nevertheless, all the DL algorithms, including FDDL, work well when the
input images are clean or corrupted by small noise. The performance of these methods dete-
riorates when the training data is contaminated, e.g., because of occlusion, disguise, lighting
variations or pixel corruption [33].
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LR matrix recovery, which determines a LR data matrix from corrupted data, has been
successfully applied to different tasks including image classification. Inspired by [15, 33]
which use LR matrix recovery to improve the performance of DL algorithm with noises, we
integrate rank minimization into sparse representation for DL. The introduction of Fisher
discrimination into the LR matrix recovery, makes the sub-dictionaries as independent as
possible and promotes the discrimination power of sub-dictionaries toward each other. Con-
sequently, the reconstruction scatter matrices would preserve the reconstructive relationship
of data much better. Based on above discussion, in this work, we propose a Joint Feature
Selection method using Low-rank Dictionary Learning (JFS-LDL) in order to capture dis-
criminative features well.

3 Joint FS using Low-rank Dictionary Learning
Given a set of training data vectors X = [X1,X2, . . . ,XK ] ∈ Rm×N , where Xi is the samples
from ith class, m is the feature dimension, and N is the total number of training samples.

3.1 Low-rank Approximation

The samples in class i are linearly correlated in many situations. More precisely, the matrix
Xi = [Xi,1,Xi,2, . . . ,Xi,Ki ] should be approximately low-rank. LR matrix recovery seeks to
decompose a data matrix X into L+E by minimizing the rank of matrix L, while reducing
‖E‖0, the associated sparse noise. Since the aforementioned optimization problem is NP-
hard, Cande‘s et al. [6] solve the following formulation to make the original LR tractable:

min
L,E

∥∥L
∥∥
∗+λ

∥∥E
∥∥

1 s.t. X = L+E (1)

Using (1), it is possible to find the LR and sparse noise of samples of the ith class; i.e.,
Xi = Li +Ei. This step reveals the structural information of each class and makes training
samples of that class more correlated. To solve the optimization problem of (1) efficiently,
the technique of inexact augmented Lagrange multipliers (ALM) [6, 13] is usually applied
due to its computational efficiency.

3.2 Low-rank Dictionary Learning using Fisher Discrimination

To improve the performance of FDDL with noises and contamination, we use a more ro-
bust representation of Xi , which is basically its LR representation, Li in the FDDL objective
function. Furthermore, when the standard LR matrix recovery is combined with Fisher dis-
crimination, the images tend to be more similar to each other for the same class, which means
more compactness exists within the same class and dissimilarity between different classes.
Therefore, the learned sub-dictionary Di would have better discrimination and reconstruc-
tion capabilities compared to FDDL model. Accordingly, the quality of structured dictionary
D = [D1,D2, . . . ,DK ] will influence the discriminativeness of the sparse coefficients A.

Denote by L = [L1,L2, . . . ,LK ] the structured LR representations of training samples. D
should have the capability to represent the sparse coefficients, i.e., L≈ DA. We can write A,
the sparse coefficients of L over D, as A= [A1,A2, . . . ,AK ], where Ai is the representation ma-
trix of Li over D. Following FDDL notations, Ai can be written as Ai = [A1

i ; . . . ;A j
i ; . . . ;AK

i ]
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(a) (b) (c) (d)
Figure 1: Learned atoms of digits 1 and 7 of USPS dataset using (a),(c) original data vectors
and (b),(d) their LR representation as the input of DL model

where A j
i is the representation coefficients of Li over D j. The objective function of LR dic-

tionary learning using Fisher discrimination is formulated as:

min
D,A

K

∑
i=1

(∥∥Li−DAi
∥∥2

F +
∥∥Li−Di Ai

i
∥∥2

F

)
+λ1

∥∥A
∥∥

1

+λ2

(
tr(SW (A)−SB(A))+η

∥∥A
∥∥2

F

)
s.t. ‖dn‖2 = 1 ∀n;

∥∥D j A j
i

∥∥2
F ≤ ε f , ∀i 6= j (2)

where SW (A) and SB(A) are within-class and between-class scatter matrices of sparse coeffi-
cients A which are defined as:

SW (A) =
K

∑
i=1

∑
ak∈Ai

(ak−mi)(ak−mi)
T and SB(A) =

K

∑
i=1

ni(mi−m)(mi−m)T (3)

where mi and m are the mean vectors of Ai and A, respectively. The objective function (2)
can be further simplified and eventually divided into two sub-problems by optimizing D and
A alternatively, i.e., updating A with D fixed, and updating D with A fixed. The optimization
details can be found in [30]. Figure 1 compares sub-dictionaries learned by FDDL model (Xi
as input of model) and LR-FDDL (objective function (2), Li as input of model) on two digits
from USPS dataset. As can be seen, the variations in the shape, thickness and orientation
have been significantly removed by sparse noise. Clearly, LR reduces the diversity across
items within each class and consequently dissimilarity between different classes would be
increased, which means sub-dictionaries are more discriminant toward each other. Rate of
misclassification of similar images from different classes (e.g. 1 and 7 in red squares) would
be decreased consequently. More importantly, due to dissimilarity of classes, even a simple
classifier like KNN can perform surprisingly well for the classification task.

3.3 Joint Feature Selection
We aim to select a subset of features that preserve the sparse reconstructive relationship of
the training samples. This is achieved by minimizing the within-class reconstruction residual
error and simultaneously maximizing the between-class reconstruction residual in the subset
of selected features. Based on the discussion in section 2, to promote discrimination, we
exploit the sparse coefficients obtained by objective function (2) to obtain the within-class
(SL

W ) and between-class (SL
B) scatter matrices:

SL
W =

1
N

K

∑
i=1

ni

∑
j=1

[
Li, j−Di Ai

i, j
][

Li, j−Di Ai
i, j
]T

SL
B =

1
N(K−1)

K

∑
i=1

ni

∑
j=1

K

∑
s=1
s6=i

[
Li, j−Ds As

i, j
][

Li, j−Ds As
i, j
]T (4)
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Algorithm 1 JFS-LDL Algorithm
Input: Data matrix X
Output: Projection matrix P
1: Find LR representation of Xi, ∀i = 1, . . . ,K by Eq. 1
2: Find D and A by LR dictionary learning using Fisher discrimination by Eq. 2
3: Construct scatter matrices SL

W and SL
B using Eq. 4

4: Solve the eigen-problem, find largest eigen-vectors to form Y
5: Initialize:parameters β ,M,µ,maxµ ,ρ
6: while

∥∥DT P+E−Y
∥∥

∞
< ε do

7: Update E as: E = 1
2+µ

(−M+µY −µDT P)

8: Update P as: P = (2βS+µDDT )−1(µDY −DM−µDE)
9: Update M as: M = M+µ(DT P+E−Y )

10: Update µ as: µ = min(ρµ,maxµ )

where ni is the number of training samples in ith class, Li, j is the LR representation of the Xi, j ,
the jth training sample in class i. Denote by Ai

i the sparse representation of Li over Di ; Ai
i, j

implies its jth column. Similarly, As
i, j is the sparse coefficients of Li, j over Ds . To optimally

preserve the sparse reconstructive relationship of data and simultaneously achieving row-
sparsity, the projection matrix P ∈ Rm×m is found by the following optimization problem:

min
P

tr(PT SL
W P)

tr(PT SL
BP)

+β
∥∥P

∥∥
2,1 (5)

That is to say, the new representation of image x after FS is obtained as; x′ = PT x where
x′(k) = x(k) if the k-th feature is selected; otherwise x′(k) = 0. The projection matrix ob-
tained by (5), can preserve within-class compactness and between-class separability well
enough in the low-dimensional space. As a result, the projected samples are more discrim-
inative and simultaneously retain the intrinsic properties of data. By imposing l2,1-norm
constraint in the objective function, P is simultaneously optimized to achieve row-sparsity;
consequently, the useful features can be preserved, while the irrelevant features can be dis-
carded [22]. According to the ratio trace problem [7], (5) can be reformulated as:

min
P

tr(PT SL
W P)+β

∥∥P
∥∥

2,1 s.t. tr(PT SL
BP) = I (6)

Although the objective function (6) is convex, the constraint is not. Based on the theorem 1
of [4], P can be obtained through the following two steps:

1. Solve the eigen-problem SL
W Y = ΛSL

B Y to find Y
2. Find P which satisfies DT P = Y

where Y is the matrix of generalized eigenvectors corresponding to min(N,m) largest eigen-
values, Λ is a diagonal matrix whose diagonal elements are eigenvalues, and D is the struc-
tured dictionary. Finding a solution for P under l2,1 constraint such that DT P = Y is usually
impossible. Therefore, a residue matrix E is introduced [28] and the following problem is
solved instead:

min
P,E

∥∥E
∥∥2

F +β
∥∥P

∥∥
2,1 s.t. DT P+E = Y (7)

For solving (7) efficiently, we take a similar approach to [28], which is basically an iterative
algorithm based on inexact ALM [13]. The augmented Lagrangian function of (7) is defined
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Figure 2: Twenty selected features by (a)MIM (b)LS (c)mRMR (d)Relief (e)SDFS (f)JSDFS
and (g)JFS-LDL methods on four datasets
as follows:

L(P,E,M,µ) =
∥∥E

∥∥2
F +β

∥∥P
∥∥

2,1 +
µ

2

∥∥DT P+E−Y
∥∥2

F +
〈
M,DT P+E−Y

〉
(8)

where M is the Lagrange multipliers and µ is a positive parameter. ALM method alterna-
tively updates the variables P and E by iteratively minimizing the augmented Lagrangian
function. Algorithm 1 outlines the details of solving (8). In this algorithm, S is a diagonal
matrix Sii = 1/2‖Pi‖2. We set β = 10−6×‖D̄‖2

F and the parameters M, µ, maxµ and ρ are
set to zero matrix, 10−6, 1.01 and 2, respectively. Details of the intermediate steps can be
followed in [28].

3.4 Training Time Complexity
• To find LR representation of Xi for all K classes, we use the accelerated version of

robust orthonormal subspace learning (ROSL+) [23] which its complexity is bounded
by O

(
r2(m+ n)

)
, where r is the rank of matrix L. So, the complexity of this step

would be O
(
Kr2(m+n)

)
.

• The complexity of LR dictionary learning using Fisher discrimination to find D and
A would be similar to that of FDDL, consisting of updating sparse coefficients and
sub-dictionaries. The overall time complexity of simplified version, which we used, is
t
(

∑i niO(m2 pε
i ) +∑i piO(mni)

)
, where t is the total number of iterations of this step,

pi is the number of ith sub-dictionary atoms and ε ≥ 1.2 is a constant [30].

• The time complexity of constructing scatter matrices SL
W and SL

B is ∑i niO(m2 +mpi)
and ∑i niO

(
K(m2 +mps)

)
respectively, where s 6= i.

• For eigen-decomposition in order to find Y , we exploit Lanczos algorithm [18] to
compute the top d = min(N,m) eigenvectors with O(dm2).

• Finally, to find P we utilize inexact ALM as shown in the steps 6-10, which its com-
plexity is O

(
γ(m3 +6mP2)

)
, where P = ∑i pi and γ is the number of iterations.

4 Experimental Results
We conduct extensive experiments on several datasets to verify the effectiveness of the pro-
posed JFS-LDL method in comparison with other FS methods and validate its capability for
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Figure 3: Recognition rate vs. number of selected features on five datasets (a)USPS (b)AR
(c)YaleB (d)PIE (e)UCF using various FS methods. The recognition rate of JFD-LDL with
KNN, Lin-SVM and RBF-SVM are shown by solid squares, dashed pentagrams and dashed
diagonals respectively. (f)Average classification time of an image in USPS dataset.

image classification task.

(a) Face Recognition: We use three benchmark datasets; the Extended YaleB [8] contains
2,414 frontal face images of 38 human subjects under different illumination condi-
tions. All the face images are cropped and resized to 32×32 and we randomly select
32 images per class for training and the rest for test. Another dataset is the CMU
PIE [24] which contains 68 individuals with 41,368 face images including different
poses, illumination conditions and expressions. In our experiments, we just use the
near frontal pose (C27) which leaves us about 100 face images for each individual, 30
of which are randomly chosen for training and the rest is used for test. All Images are
resized to 32× 32. Finally, we evaluate our method on the AR face dataset [16] that
consists of over 4,000 frontal images from 126 individuals. As a standard evaluation
procedure, we select a subset of 2,600 images from 50 male and 50 female subjects in
the experiments. Each face image is resized to 27× 20 and for each person, we ran-
domly select 20 images for training and the remaining disguise images with scarves
or sunglasses are used for testing.

(b) Digit Recognition: We also perform handwritten digit recognition on the widely used
USPS dataset [10], which has 7,291 training and 2,007 test images, each of size 16×
16. Here, the number of atoms in each sub-dictionary is set to 200.

(c) Action Recognition: At last, we conduct action recognition on the UCF sport action
dataset [20]. There are 140 videos which cover ten sport action classes such as diving,
golfing, kicking, lifting and so on. Their action bank features can be found in [21],
which has around 30,000 feature dimensions. We follow the experiment settings in
[11, 30] and evaluate our method via fivefold cross validation.
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SRC SRC† FDDL LC-KSVD LLC D-KSVD JFS-LDL JFS-LDL?

[27] [27] [30] [11] [25] [32]

USPS 93.9 78.5 97.1 96.4 95.5 68.9 95.3 (160) 90.1
YaleB 97.2 80.2 97.0 96.7 90.7 94.1 97.8 (500) 94.5

AR 97.5 66.5 92.7 93.7 88.7 88.8 98.5 (150) 90.2
PIE 93.0 90.2 97.0 91.8 90.3 89.3 99.9 (300) 99.7
UCF 92.9 83.6 94.3 91.2 87.5 88.1 99.1 (2000) 99.0

Table 1: The recognition accuracy (%) of different methods on various datasets

First, we compare the proposed method with several standard FS methods including min-
imum Redundancy Maximum Relevance(mRMR) [19], Laplacian Score(LS) [9], Mutual
Information Maximization(MIM) [3], Relief [12] and two sparsity-based methods proposed
in [28]; sparse discriminative feature selection (SDFS) and joint sparse discriminative fea-
ture selection (JSDFS). Figure 2 shows 20 selected features on some training images from
four different datasets. We observe that the selected features by MIM, mRMR, LS and SDFS
have concentrated distribution, while those by JSDFS and JFS-LDL are distributed dispers-
edly and this is mainly due to joint FS property of l2,1-norm. Moreover, compared with
JSDFS and Relief, the selected features by our method are distributed in areas that hold
more discriminative information; e.g., in the face datasets, these points are mostly around
eyes, nose and mouth.

Then, we evaluate our method on various image classification tasks with different num-
ber of selected features. KNN is used for classification on the new representations of images.
Figure 3 illustrates the recognition rate vs. the number of selected features on five datasets.
As these graphs illustrate, JFS-LDL (solid line with squares) improves the recognition rate
over other methods consistently and notably. JFS-LDL can maintain a relatively stable per-
formance under different dimensions, and as the number of selected features decreases, its
advantage becomes more obvious. We further evaluate JFS-LDL based on another popular
classifier, SVM with linear and RBF kernels. We use One-Against-All SVM for multi-class
classification and the parameters are selected by cross-validation. These results are also in-
cluded in Figure 3 with dashed pentagrams and dashed diagonals for linear and RBF SVM
respectively. Both linear and RBF SVM tend to have higher accuracy than KNN constantly
across all dimensions in each dataset; however, in some datasets such as YaleB, they affect
the recognition performance significantly. Generally, SVM shows more stable trend than
KNN especially in lower dimensions.

Next, we compare the performance of our method in image classification to that of SRC
and some of the recently proposed DL methods. The detailed comparison results on five
datasets are summarized in Table 1. Here, we choose SVM with RBF kernel for classifica-
tion of JFS-LDL and report the best performance as well as the corresponding number of
selected features in parentheses. Additionally, we measure the performance of SRC when
using the same size as the dictionary (denoted SRC†) and that of our method while using just
10% of randomly sampled features (denoted JFS-LDL?). We observe that JFS-LDL with
a selected subset of features is superior or competitive to other methods with much higher
feature dimensions in all datasets. This implies the effectiveness of our method in capturing
the discriminative information for classification. Moreover, it is noticed that the proposed
method can achieve high recognition accuracy using a random subset of features, i.e., JFS-
LDL?. Class-specific LR dictionary learning along with Fisher discrimination, encourages
discrimination capability of dictionary; hence, we can achieve good accuracy on image clas-
sification, even with a simple classifier such as KNN or SVM. In contrasts to most of DL
methods which use l1-optimization to find the representation of test images and use the re-
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JFS-FDDL JFS-LDL

KNN Lin-SVM RBF-SVM KNN Lin-SVM RBF-SVM

USPS (160) 88.4 83.4 88.1 94.8 91.4 95.3
YaleB (500) 35.9 79.2 83.1 87.3 98.2 97.8

AR (150) 56.2 73.5 76.3 81.5 99.9 98.5
PIE (300) 80.8 91.5 94.6 99.9 99.9 99.9

UCF (2000) 81.2 94.1 95.6 98.0 99.0 99.1

Table 2: Performance comparison of JFS-LDL and JFS-FDDL on different datasets

construction error for classification, which is time-consuming, our classification schema is
very efficient and fast. For instance, we compare the average classification time of an test
image for the evaluated methods on USPS dataset in Figure 3(f). As can be seen, our method
(using RBF-SVM) is much faster than SRC and other DL methods, which is a desirable
property for large-scale image classification task.

Finally, to verify the efficacy of LR in the proposed FS method, we use the original
FDDL model that uses raw data vectors Xi as the input of model and then perform JFS using
Algorithm 1; clearly, step 1 would be ignored. Then, we do classification using KNN and
SVM. Table 2 compares the recognition rate of JFS-LDL and JFS-FDDL on five datasets.
It is noticed that JFS-LDL noticeably outperforms JFS-FDDL and this is mainly due to
the ability of LR in denoising the data and thereby increasing the dissimilarity between
classes. As a result, classes would be more separable and a simple classifier can achieve
high recognition rate. The effect of LR is more noticeable in face datasets whose images are
under sever occlusion, disguise and illumination variations. Using LR approximation gives
us the opportunity to have well-separated classes and there is no need to use complicated and
time-consuming classifiers like sparse coding (l1-minimizer); however, it should be noted
that the integration of LR approximation with Fisher discrimination would enable us to have
enough discrimination to capture useful features.

5 Conclusion
In this paper, we proposed a joint FS method by integrating LR approximation and Fisher
discrimination DL. The objective function finds a subset of features that preserve the re-
constructive relationship of the data by minimizing the ratio of within-class reconstruction
residual to between-class reconstruction residual in the subset of selected features. Mean-
while, the l2,1-norm minimization on projection matrix is applied to jointly select features.
As a result, the projected samples are more discriminative and simultaneously retain the
important properties for classification, e.g., intraclass compactness and interclass separabil-
ity, as well as the reconstructive relationship. Extensive experiments on benchmark datasets
show that JFS-LDL consistently outperforms all the other evaluated FS methods, especially
in lower dimensions in image classification task. Besides, the combination of LR approx-
imation and Fisher discrimination, leads in more compactness within the same class and
dissimilarity between different classes. Consequently, a simple and fast classifier like KNN
or SVM would perform well for classification. The proposed method can achieve superior
or competitive recognition rate compared to the recently proposed DL methods in much less
time. The future work may include exploring the joint learning of discriminative features and
dictionaries, which has been explored to some extent by Lu et al. [14] for image set based
face recognition in order to have more discriminative information, that may be ignored in the
feature learning stage if feature selection and dictionary learning are performed individually.
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