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Abstract

Ranking is the central problem for many applications such as web search, recom-
mendation systems, and visual comparison of images. In this paper, the multiple kernel
learning framework is generalized for the learning to rank problem. This approach ex-
tends the existing learning to rank algorithms by considering multiple kernel learning and
consequently improves their effectiveness. The proposed approach provides the conve-
nience of fusing different features for describing the underlying data. As an application
to our approach, the problem of visual image comparison is studied. Several visual fea-
tures are used for describing the images and multiple kernel learning is adopted to find an
optimal feature fusion. Experimental results on three challenging datasets show that our
approach outperforms the state-of-the art and is significantly more efficient in runtime.

1 Introduction
Motivation Learning to rank is fundamental for many applications such as web search, rec-
ommendation systems, visual image comparison, and online advertisement. Without loss of
generality, modeling visual image comparison is studied as an application for our ranking
model.

Visual image comparison has been used extensively for a variety of applications [14,
24, 25, 26]. While traditional visual recognition approaches focus on object and activity
recognition, recent work proposes models for visual image comparison based on their visual
attributes. Visual Attributes are human-interpretable mid-level semantic concepts such as
“furry”, “natural”, etc. that are shared across related categories. Relative attributes [24] were
shown to be more effective than attribute scores from binary classifiers. For example, while
it maybe difficult to determine the existence of a visual attribute in an image, it could be
much easier to determine if one image exhibits a stronger visual attribute than the other (Top
row of Figure 1).

Image comparison via relative attributes has emerged as a promising paradigm for many
applications. In image search [14], relative attributes could be used by the user to describe
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Figure 1: Illustration of our proposed approach. Given two images, we want to know which image has
a stronger visual attribute than the other. Different features are extracted and multiple kernel learning
is used for fusing the kernels from each feature set. RankMKL (3.3) is used for ranking the images.

which properties of exemplar images should be adjusted in order to improve the search re-
sults. In active learning [2, 25], relative attributes were used as a mode of communication for
the human supervisor to provide an active learning machine with feedback when it predicts
an incorrect label for an image. This allows a classifier to better learn from its mistakes,
leading to accelerated discriminative learning of visual concepts even with few labeled im-
ages. In zero-shot learning [24], relative attributes were shown to yield significantly better
zero-shot learning accuracy when compared to their binary counterparts.

Proposal We address the problem of modeling the visual comparison of images using
relative attributes. We propose to solve the problem by fusing several visual features (his-
togram of oriented gradient [7], GIST descriptor [23], local binary patterns [22], filtering
with a bank of Gabor filters [21], and color histograms), and use a kernel-based method
for learning the model. While classical kernel-based methods are based on a single kernel,
in practice it is often desirable to base the learned model on combinations of multiple ker-
nels [1]. In this paper, the standard multiple kernel learning algorithm - used previously for
object detection and image categorization - has been extended to learn an optimal feature
fusion and build the ranking model.

Contributions We emphasize our main contributions over prior work:

1. The standard multiple kernel learning formulation is extended for the ranking problem
and applied for modeling visual comparisons. To the best of our knowledge, this is the
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first time that multiple kernel learning is used for ranking.

2. A novel approach is proposed for visual comparison of images based on feature fusion
and multiple kernel learning. Experimental results on three datasets demonstrate the
superiority of our proposed approach over the state-of-the-art.

2 Related Work
Learning comparison models and multiple kernel learning have been used extensively in the
past several years. In this section, we briefly summarize the literature associated with each
of these research areas.

Learning Comparison Models: Modeling visual comparisons could be categorized into
two groups: linear methods, and non-linear methods. Parikh and Grauman [24] learned a
linear ranking function for modeling relative attributes. Although the linear function per-
formance may be inferior to nonlinear methods, it is useful to quickly produce a baseline
model and its training time is faster. Li et al. [17] extended this approach for the non-linear
case by using an ensemble of ranking trees to learn a model for each attribute. However,
this approach fails to accommodate for fusing visual features of different types as it relies on
learning a piecewise-linear ranking function which assumes equal importance for features of
different types.

Information retrieval has also generated a vast volume in research literature for the task
of learning to rank. Existing algorithms for learning to rank could be categorized into three
groups according to the input representation: point-wise, pairwise, and list-wise algorithms.
Point-wise algorithms [11, 27] predict the relevance of a point to a query by minimizing a
regression loss. In pairwise ranking algorithms, the problem is approximated by a classifica-
tion problem and learning a binary classifier that can tell which point is better in a given pair.
The goal is to minimize average number of inversions in ranking. These approaches include
rankSVM [13], RankBoost [9], RankNet [4], Deep Ranking [33], and GBRank [43]. List-
wise algorithms such as Lambda-MART [34], and AdaRank [35] try to directly optimize a
ranking performance measure over all queries in the training data. Our approach is based on
an extension for the rankSVM [13] pairwise approach. One of the advantages of adopting
the pairwise ranking approach is that most classification methods can be easily adapted to
this formulation of the ranking problem. We take advantage of this property to extend the
standard multiple kernel learning algorithm for the ranking problem.

Ranking models could also be categorized according to their locality. All the afore-
mentioned methods could be regarded as global methods where a single ranking model is
learned from the training data. Yu and Grauman [39] used a local learning model for the task
of fine-grained image comparison. In this approach, a ranking model is learned on the fly
from analogous training pairs and the learned model is used for ranking. Since the ranking
model is learned from fine-grained neighbors, it was shown to be effective for fine-grained
comparison of images; however, it has the disadvantage of being slow at test time since a
new model has to be learned for every test pair.

In this paper, we present a non-linear, pairwise, and global approach based on rankSVM
for modeling visual comparison of images. Our approach fuses multiple base kernels instead
of one leading to a better discrimination between the compared images by combining mul-
tiple image features (e.g. shape, appearance, and texture features), and hence it outperforms
the state-of-the-art both in coarse-grain and fine-grain visual comparisons.
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Multiple Kernel Learning: we briefly review some of the related work for Multiple
Kernel Learning in computer vision. We refer the reader to a more comprehensive study
in [3, 10]. Multiple Kernel Learning (MKL) extends traditional kernel methods by com-
bining multiple base kernels, leading to better representation and discrimination of samples.
Since the introduction of MKL [1], it has been shown to improve several machine learning
tasks such as classification [28, 31, 44], feature fusion [30, 41], variable selection [37], and
dimensionality reduction [19, 20]. In computer vision, Vemulapalli et al. [32] used MKL for
the classification of manifold features where the problem of learning a good kernel-classifier
combination was formulated as a convex optimization problem and solved using a multiple
kernel learning approach. Xu et al. [36] used MKL for complex event detection in videos by
utilizing related exemplars. Chen et al. [5] used multiple kernel learning for the recognition
of facial expressions in uncontrolled environments. To the best of our knowledge, this is the
first time MKL is used for the image comparison task.

3 Proposed Approach

This section describes our proposed approach for modeling visual image comparisons using
multiple kernel learning and feature fusion. The approach overview is described in sec-
tion 3.1. Sections 3.2 and 3.3 show how the standard multiple kernel learning formulation is
extended for the ranking problem.

3.1 Approach Overview

Given two images, we want to determine which image exhibits a particular visual attribute
more than the other. Our approach works on a per attribute basis, thus a separate model is
learned for each visual attribute. Figure 1 demonstrates the outline of our approach. The
first step is to extract a set of features from each image. Several feature sets are selected to
capture different visual cues in the image. To capture the image texture, we extract Local
Binary Patterns (LBP) [22] and compute the response from a set of Gabor filters [21]. For
capturing the shape and appearance of the images, GIST [23] and HoG [7] descriptors are
used. Finally, we compute a color histogram in the LAB color space to capture the color
information.

The second step is to fuse the different feature sets and learn the ranking model. For this
task, a separate kernel function is computed for each set of features (i.e. we compute five dif-
ferent kernels). The computed kernels are considered as base kernels for our multiple kernel
learning module. Using the multiple kernel learning algorithm described in section 3.3, we
learn the optimal weights for creating a linear combination from the base kernels together
with the optimal parameters for the ranking model.

A similar procedure takes place at test time, features are extracted, and the previously
learned kernel weights and ranking model are used for evaluating the new test pair.

3.2 Support Vector Machines For Ranking

The training set in ranking SVM is given as S = {(x1,y1), · · · ,(xn,yn)} where xi is a data
point and yi is an integer indicating the rank of xi, such that xi �s x j when yi < y j . We say
xi �S x j if a vector xi is ranked higher than x j. By defining the set of preference pairs as
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P = {(i, j)|xi �S x j} with p = |P|, rankSVM [13] solves:

minimize
w,ε

{1
2

wTw+C ∑
(i, j)∈P

εi j}

subject to w.φ(xi)≥ w.φ(x j)+1− εi j,

εi j ≥ 0,∀(i, j) ∈ P,

(1)

where w is the vector of parameters defining the optimal decision hyperplane and the regu-
larization parameter C > 0 controls the generalization capabilities of the ranking function. φ

is a function that maps data to a higher dimensional space. The loss term εi j in 1 is called L1
loss. If it is replaced by ε2

i j , we have L2 loss.
Several approaches have been proposed for solving 1 using kernel techniques [11, 16,

40]. In our approach, a mapping between the rankSVM and the traditional SVM problem is
used as proposed by [16]. SVM [6] solves the following optimization problem:

minimize
w,ε

{1
2

wTw+C
n

∑
i=1

εi}

subject to yiwT
φ(xi)≥ 1− εi,

εi ≥ 0, i = 1, ...,n.

(2)

The rankSVM optimization problem in 1 could be mapped to the SVM problem in 2 by
defining:

∀(i, j) ∈ P,yi, j = 1,φi, j = φ(xi)−φ(x j), (3)

The problem 2 is solved by maximizing its dual on which the kernel trick can be applied:

maximize
α

{1T
α− 1

2
α

T Qα}

subject to 0≤ αi, j ≤C,∀(i, j) ∈ P,
(4)

where α ∈Rp are Lagrange multipliers indexed by pairs in P, 1∈Rp is a vector of ones, and
Q(i, j),(u,v) = φ T

i, jφu,v is a p× p symmetric matrix. The matrix is computed using the kernel
function where:

Q(i, j),(u,v) = k(xi,xu)+ k(x j,xv)− k(xi,xv)− k(x j,xu) (5)

and k(xi,x j) = φ(xi)
T φ(x j) is the kernel function representing the inner products after map-

ping the data to a higher dimension space.
Directly computing the matrix Q requires O(n4) kernel evaluations, Q can be factorized

as Q = AKAT , where K is the kernel matrix with K = [k(xi,x j)]i, j=1,··· ,n and A ∈ Rp×n is
defined as follows:

A =


· · · i · · · · · · j · · ·

...
(i, j) 0 1 0 0 −1 0

...

 (6)

That is, if (i, j) ∈ P then the ith entry of the corresponding row in A is 1, the jth entry is −1,
and all the other entries are zeros. Hence, computing Q requires O(n2) kernel evaluations.
Storing Q is not needed any more and only the sparse matrix A and the kernel matrix K are
kept in memory.
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3.3 Multiple Kernel Learning for Ranking (RankMKL)
In the previous section, it was shown how to map the rankSVM optimization function in 1 to
the SVM optimization problem 2. After mapping the problem to an SVM optimization, any
of the multiple kernel learning algorithms proposed for the SVM classifier could directly be
adopted. The Generalize Multiple Kernel Learning (GMKL) algorithm from [31] is used in
our proposed approach.

Instead of using a single kernel matrix (K) for learning the ranking model, an optimal
combination from several base kernels is learned, and the combination of the base kernels
matrix (Kd) is used for training the ranking model, where kd(xi,x j) = φ(xi)

T
d φ(x j)d repre-

sents the dot product in feature space φ and is parametrized by d such that:

kd(xi,x j) = fd({ki(xi,x j)}t
i=1), (7)

where t is the number of base kernels, d∈Rt is the optimal kernel weights to be learned, and
the combination function fd can be a linear or a nonlinear function for combining the base
kernels . Our goal is to learn the optimal values for (d) together with the optimal values for
the Lagrange multipliers (α) form 4 representing the learned ranking model. Accordingly,
the objective function 4 is updated as follows:

maximize
α

{1T
α− 1

2
α

T Qdα + r(d)}

subject to 0≤ αi, j ≤C,∀(i, j) ∈ P,

d≥ 0,

(8)

Qd,(i, j),(u,v) = kd(xi,xu)+ kd(x j,xv)− kd(xi,xv)− kd(x j,xu), (9)

where both the regularizer r and the kernel kd can be any general differentiable functions of
d with continuous derivatives. In our approach, five base kernels are used, one for each of
the five feature sets (LBP, HoG, Gabor, GIST, and Color). The kernel function kd is selected
as a linear combination from the five base kernels: kd(xu,xv) = ∑

5
i=1 diki(xu,xv) and L2

regularization function is used for r(d). Gradient descent is used for solving 8 using the
same algorithm in [31].

4 Experiments
In this section, the effectiveness of our proposed approach for visual comparison of images
is tested against state-of-the-art approaches as well as a set of informative baselines. Our ex-
periments are conducted on three public benchmark datasets for image comparison. We find
that our proposed approach outperforms the state-of-the-art with a significant improvement
in runtime efficiency.

4.1 Evaluation Datasets
Following prior work, evaluation experiments are conducted on three datasets: UT-Zap50K [39],
Public Figures dataset (PubFig) [15], and Outdoor Scene Recognition (OSR) [23].

UT-Zap50K Dataset: The UT-Zappos50K introduced in [39] specifically targets the
fine-grained attribute comparison task. The dataset is fine-grained as it focuses on a narrow
domain of content in the context of an online shopping task with 50,000 catalog shoe images
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from Zappos.com. The dataset contains two collections: UT-Zap50K-1 and UT-Zap50K-2.
UT-Zap50K-1 is suitable for the task of coarse grained comparison, while the UT-Zap50K-2
includes more challenging images making it more suitable for fine-grained visual compar-
isons.

PubFig Dataset: The public figures dataset introduced by [15] is one of the largest
datasets for face verification and recognition. The same subset of images is used following
prior work on attribute comparison [18, 24, 39]. The subset includes 772 images and 11
visual attributes.

OSR Dataset: The Outdoor Scene Recognition (OSR) dataset [23] contains 2688 images
from 8 outdoor scene categories and 6 visual attributes covering a large variety of outdoor
places. The same set of attributes in [17, 24, 39] is used for evaluation.

4.2 Experimental Settings
Multiple Kernel Learning: For multiple kernel learning, a kernel is computed for each set
of features (i.e. five kernels are computed for LBP, HoG, GIST, Gabor, and Color histogram
features). A single kernel is computed as a linear combination from the separate kernels
for each feature set. Optimal weights for the linear combination are learned using multiple
kernel learning as described in 3. We followed the guidelines in [12] for selecting suitable
kernels for each feature set. Since the number of features are greater than the number of
training samples in LBP, HoG, and Gabor features, a linear kernel is selected for these fea-
tures since it is less likely to overfit. Experiments using non-linear kernels for these feature
sets lead to similar results. This is different for GIST and Color histogram features where
the number of features is less than the number of training samples. Exponential χ2-kernels
are used for these feature sets as they have reported state-of-the-art results for measuring the
similarity between histograms [29, 42]. The regularization parameter C for Rank-SVM and
the χ2-kernel parameter γ are selected using 10-fold cross-validation.

Experiments show that none of the feature descriptors have the same discriminative
power for all the different visual attributes. For example, GIST features perform well when
comparing outdoor scenes, whereas local binary patterns performs better when comparing
facial images. Therefore, instead of using a single feature set for all visual attributes, it
is better to optimally fuse a set of diverse and complementary features - such as features
based on color, shape and texture information - in order to better describe the different visual
attributes.

Evaluation Metrics: As an evaluation metric, accuracy is reported in terms of the per-
centage of correctly ordered pairs, following prior work. The time required for comparing
test pairs is also reported to illustrate the significant improvement in runtime over prior work.
The exact same train/test splits as [17, 24, 39] are used.

Comparisons and Baselines: Our approach is compared against the state-of-the-art as
well as some informative baselines. The state-of-the-art approach proposed by Yu and Grau-
man [39] (FG-LocalPair) is briefly summarized below. In this approach, a local learning
model is used for fine-grained visual comparison. Given a novel pair of images, a local
ranking model is learned on the fly, using only analogous training pairs. When identifying
analogous pairs, a Mahalanobis distance matrix is learned using the Information-theoretic
Metric Learning algorithm (ITML) [8]. The selected pairs are used for training a linear
ranking model, and the learned model is used for evaluating the test pair.

For a fair comparison with our approach, none of the test images are used for metric
learning when implementing the FG-LocalPair model. This is different from the implemen-
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tation of [39] where a subset from the test images is used for metric learning. Experiments
showed that using this subset of test images in the training pipeline led to a bias in the re-
ported results. For the Pubfig and OSR dataset, the test pairs are removed from the training
pipeline and the results are reported in Table 1 and Figure 3. For the UT-Zappos50K dataset,
the results on the UT- Zappos50K-1 are not biased as none of the test images were used in
the training pipeline. For the UT-Zappos50K-2, more that 90% of the test images were used
in the training pipeline. Computing the Mahalanobis distance requires providing two sets for
the learner: a set of different image pairs, and a set of similar images. Since the majority of
the image pairs labelled to be similar were used for testing in the UT-Zappos50K-2 dataset,
we were unable to evaluate the Mahalanobis distance without using samples from the testing
data.1

A set of baselines is also used for demonstrating the effectiveness of feature fusion and
multiple kernel learning. Results from multiple kernel learning are compared to the results
obtained using each feature set separately as well as the result from concatenating all the
features together instead of using multiple kernel learning (each feature set is normalized
separately such that the feature values are between zero and one). The first baseline demon-
strates the effectiveness of using a set of features instead of using only one feature set. The
second baseline demonstrates the effectiveness of using multiple kernel learning for select-
ing the optimal feature fusion. Results are also compared to the global non-linear ranking
model proposed in [17] (RelTree), which learns a hierarchy of functions, each trained with
successively smaller subsets of the data. Code is not available, so the authors’ published
numbers are reported (available for OSR and PubFig). Finally, our approach is compared to
the “LocalPair” approach from [39] which is similar to the FG-LocalPair approach except
that the Euclidean distance is used for selecting the neighbors instead of using the Maha-
lanobis distance.

4.3 Results on Zappos50K
Figure 2 shows the accuracy on UT-Zappos-50K. The same train/test splits in [39] are used.
The UT-Zappos-50K-1 is a better representative for the general performance of the model
since the average of ten different training and test splits is considered, not just a single split as
in UT-Zappos-50K-2. For UT-Zappos-50K-1, our approach outperforms the state-of-the-art
for all the four attributes. It is also clear that combining several features instead of consid-
ering a single feature is much more effective. The importance of multiple kernel learning is
clear, instead of concatenating all the feature descriptors together, multiple kernel learning
learns the optimal weights for fusing the features, thus leading to a better performance. For
UT-Zappos-50K-2, our approach outperforms the state-of-the-art in three out of the four vi-
sual attributes. As explained in the previous section, unbiased results for the FG-LocalPair
approach are not available. However, our approach still outperforms the FG-LocalPair re-
sults reported in [39] for almost all of the attributes.

4.4 Results on Pubfig
Table 1 shows the accuracy on the PubFig dataset. Image pairs for this dataset originate
from category-wise comparisons. On average, 20,000 training pairs are used for training
and the evaluation is done on 120,000 test pairs. Our method outperforms all the baselines.

1We’d like to thank the authors for sharing the metric learning code with us. Including test images for metric learning was confirmed via personal communication [38].
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Open Pointy Sporty Comfort
LocalPair [39] 88.53 88.87 92.20 90.90

FG-LocalPair [39] 90.67 90.83 92.67 92.37
LBP Features 90.57 90.53 93.17 91.83
HoG Features 89.73 88.37 89.27 89.67

Gabor Features 87.50 87.13 88.70 87.50
GIST Features 91.77 92.13 93.90 93.10
Color Features 70.60 74.40 79.37 71.70
Concatenation 92.97 92.03 94.63 92.27
Our Approach 93.63 92.57 95.07 93.20

Open Pointy Sporty Comfort
LocalPair [39] 71.64 59.56 61.22 59.75

LBP Features 66.18 65.53 64.08 66.70
HoG Features 62.82 65.19 63.07 66.09

Gabor Features 62.82 60.15 62.79 60.98
GIST Features 62.00 64.42 66.76 63.43
Color Features 46.18 52.47 55.22 57.30
Concatenation 64.36 65.87 67.31 67.01
Our Approach 64.91 66.72 67.31 66.50

(a) Results on the UT-Zappos-50K-1 dataset. (b) Results on the UT-Zappos-50K-2 dataset.
Figure 2: Results on the UT-Zappos-50K dataset.

Male White Young Smiling Chubby Forehead Eyebrow Eye Nose Lip Face
RelTree [17] 85.33 82.59 84.41 83.36 78.97 88.83 81.84 83.15 80.43 81.87 86.31

LocalPair [39] 81.53 77.13 83.53 82.60 78.70 89.40 80.63 82.40 78.17 79.77 82.13
FG-LocalPair [39] 86.94 82.89 84.84 83.83 82.84 89.20 85.04 84.87 84.12 84.21 85.74

GIST Features 86.95 83.04 85.80 84.52 81.98 90.75 83.97 84.77 83.17 84.40 86.25
Color Features 62.22 61.27 59.11 57.98 54.73 69.52 60.80 59.79 57.81 57.46 56.94
Gabor Features 80.02 76.33 80.73 80.12 79.23 86.32 76.33 77.44 77.83 79.40 80.64
HoG Features 81.83 77.57 82.28 81.98 80.97 89.68 80.07 80.15 81.87 82.72 83.72
LBP Features 85.83 81.23 86.28 85.74 83.84 92.03 84.44 84.38 85.70 84.09 86.16

Feature Concatenation 87.16 85.21 87.91 86.59 85.96 93.83 84.98 86.90 87.54 86.40 87.74
Our Approach 87.88 85.85 88.44 87.39 86.32 93.97 85.98 87.91 88.33 86.83 88.16

Table 1: Accuracy comparison for the PubFig dataset.

Most notably, it outperforms the RelTree [17] non-linear approach and the fine-grained local
learning approach [39], thus demonstrating the importance of feature fusion and multiple
kernel learning.

4.5 Results on OSR
Figure 3 shows the accuracy on the OSR dataset. The OSR dataset is similar to the Pubfig
dataset in that supervision data is based on category-wise comparisons. The OSR offers
the largest number of training and testing pairs (20,000 pairs for training and 1,800,000
testing pairs on average), hence, runtime performance evaluation has been performed on
this dataset. In terms of accuracy, the performance is similar to other datasets where our
approach outperforms the state-of-the-art results as well as the baselines. One advantage
of our approach is that a single ranking model is learned instead of learning a new model
for each test query. Figure 3-(b) shows the runtime performance for our proposed approach
as compared to the FG-LocalPair approach [39]. The testing time in seconds is plotted
using a logarithmic scale. The machine used for evaluating the runtime performance has
the following configuration: 16 GB 1600 MHz DDR3 memory and 2.8 GHz Intel quad-core
Core i7 processor. The improvement in runtime is obvious, while our approach evaluates a
million test pairs in around one minute, the local learning approach requires more than an
hour to produce the results.

5 Conclusion
In this paper, the standard multiple kernel learning formulation is extended to the learning to
rank problem. Effectiveness of the proposed approach is demonstrated on the visual image
comparison task. Although MKL has been extensively used for object recognition and image
categorization, this is the first time it has been used for image comparison. Through extensive
experiments, the advantage of our approach is clearly demonstrated both in terms of accuracy
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Natrl Open Persp. LgSize Diag ClsDepth
RelTree [17] 95.24 92.39 87.58 88.34 89.34 89.54

LocalPair [39] 94.63 93.27 88.33 89.40 90.70 89.53
FG-LocalPair [39] 94.68 92.90 88.03 88.84 89.65 89.91

GIST Features 94.62 91.44 85.66 86.47 86.31 86.80
Gabor Features 74.16 79.80 72.20 71.88 69.90 74.27
HoG Features 91.73 90.37 84.47 84.79 84.58 82.14
LBP Features 94.26 89.41 86.15 86.18 87.13 88.14

Feature Concatenation 95.54 91.77 88.40 88.54 89.56 90.02
Our Approach 96.20 93.69 89.84 90.06 91.11 91.54

(a) Accuracy comparison for the OSR dataset. (b) Runtime performance on OSR.
Figure 3: Accuary and runtime performance on the OSR dataset.

and runtime efficiency. Future work includes exploring more applications of multiple kernel
learning for ranking, such as web search and recommendation systems.
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