
Overlapping Domain Cover for Scalable and
Accurate Regression Kernel Machines

Supplementary Materials
Mohamed Elhoseiny, Ahmed Elgammal

m.elhoseiny@cs.rutgers.edu, elgammal@cs.rutgers.edu
Computer Science Department Rutgers University

New Jersey, USA

Contents
Lemma 4.1 Proof 1

More Figures and Results 3

Local Kernel Machines hyper-parameters on each dataset 3
Poser Dataset . 3
HumanEva Dataset . 4
Human 3.6 Dataset . 5

Equal Size Kmeans (EKmeans): More Details 5
Iterative Minimum-Distance Assignments (IMDA) k-means EKmeans . . . 5
Comparison between IMDA and Assign and Balance (AB) EKmeans(presented

in the paper) . 5
More figures on AB Ekmeans . 5
Equal Size Assignment Algorithms Pseudocode 6

Overlapping Domain Cover(ODC) Generation-Algorithm 7

IWTGP integration under ODC-Framwork 7
Training . 9
Prediction . 9
IWTGP-ODC Experiments . 10

Lemma 4.1 Proof
Lemma 4.1. Under ODC notion, as the overlap p increases, the closer the nearest
model to an arbitrary test point and the more likely that model get trained on a big
neighborhood of the test point.

Proof. We start by outlining the main idea behind the proof, which is directly con-
nected to the fact that K = N/(1 − p)M , which indicates that the number of local

1

models increases as p increases given fixed N and M . Under the assumption that the
local models are spatially cohesive, p → 1 theoretically indicates that there is a local
model centered at each point in the space (i.e. K =∞). Hence, as p increases, the dis-
tribution of the kernel machines is the finest and the more likely a test point to find the
closest kernel machines trained on a big neighborhood of it leading to more accurate
prediction. Meanwhile, as p goes to 0, the distribution is the coarsest and the less likely
a test point finds, the closest kernel machines, trained on a big neighborhood.

Let’s assume that each kernel machine is defined on M points that are spatially
cohesive, covering the space of N points with N

(1−p)M . Let’s assume that center of the
M points in kernel machine i is µi, the the Co-variance matrix of these points are Σi.
Hence

p(x|Di) = N (µi,Σi)

= (2π)−
dX
2 |Σi|−

1
2 e−

1
2 (x−µi)

TΣ−1
i (x−µi)

(1)

where N (µi,Σi) is a normal distribution of mean µi and Co-variance matrix Σi.
Let’s assume that there are two ODCs, ODC1 and ODC2, defined on the same N

points, the first one has overlap p1 and the second one is with overlap p2, such that,
p2 > p1. Let’s assume that the number of kernel machines in ODC1 and ODC2 are
K1 and K2, respectively. Hence,

K1 =
N

(1− p1)M
, K2 =

N

(1− p2)M
(2)

Since p2 > p1, 0 ≤ p1 < 1 and 0 ≤ p2 < 1, then K2 > K1, which indicates
that the number of kernel machines in ODC2 with higher overlap is bigger than the
number of kernel machines in ODC2. Let’s assume that there is an test point x∗ and
define that the probability that x∗ is captured by the ODC to be proportional to the
maximum probability of x∗ among the domains.

p(x∗) =

K∑
i=1

p(x∗, Di) =

K∑
i=1

p(x∗|Di)δ(p(x∗|Di)−maxKj=1(p(x∗|Di)))

p(x∗) = maxKi=1p(x∗|Di)

= (2π)−
dX
2 maxKi=1|Σi|−

1
2 e−

1
2 (x∗−µi)

TΣ−1
i (x∗−µi)

(3)

where δ(0) = 1, 0 otherwise. The reason behind this definition of p(x∗) is that our
method select the domain of preduction based on argmaxKi=1p(x∗|Di). Hence pODC1(x∗) =
maxK1

i=1pODC1(x∗|Di) and pODC2(x∗) = maxK2
i=1pODC2(x∗|Di).

We start by the case where the points are uniformally distributed in the space. Under
this condition and assuming that spatially cohesive domain cover, this leads to that
p(x∗|Di) ≈ N (µi,Σ)∀i, where Σ1 = Σ2 · · · = ΣK = Σ. Hence

p(x∗|Di) ∝ e−
1
2 (x∗−µi)

TΣ−1(x∗−µi)

ln(p(x∗|Di)) ∝ −(x∗ − µi)TΣ−1(x∗ − µi)
(4)

2

Then

p(x∗) = maxKi=1p(x∗|Di)

= (2π)−
dX
2 Σ|− 1

2maxKi=1|e−
1
2 (x−µi)

TΣ−1(x−µi)

∝ maxKi=1e
− 1

2 (x−µi)
TΣ−1(x−µi)

ln(p(x∗)) ∝ maxKi=1 − (x− µi)TΣ−1(x− µi)

(5)

Hence, p(x∗) gets maximized as it get closer to one of the centers of the domains µi,
defined by the ODC. It is not hard to seen that that chances of x∗ to be closer to one of
the centers covered by ODC2 is higher than ODC2, especially when p2 � p1. This is
since K1 = N

(1−p1)M ,K2 = N
(1−p2)M . Hence K2 � K1 when p2 � p1. For instance,

when p1 = 0 and p2 = 0.9, this leads to that ODC1 will generate K1 = N
M domains,

while ODC2 will generate K2 = 10·N
M = 10K1, which is ten times more domains and

centers. The fact that there are much more domains if K2 � K1 together with that
there domains are spatially cohesive leads to maxK1

i=1 − (x∗ − µ1
i)

TΣ−1
1 (x∗ − µ1

i) �
maxK2

i=1 − (x∗ − µ2
i)

TΣ−1
2 (x∗ − µ2

i). The proof of this statement derives from the fact
that maxKi=1 − (x∗ − µi)

TΣ−1(x∗ − µi) is could maximized by (1) if x∗ gets very
close to one of µi, i = 1 : K,and (2) smaller variance |Σ|, which is minimized by
the nature by which ODC is created, since each domain i is created by neighboring
points to its center (i.e. |Σ1| � |Σ2|). This directly leads to that if K2 � K1 then
maxK1

i=1 − (x∗ − µ1
i)

TΣ−1
1 (x∗ − µ1

i)� maxK2
i=1 − (x∗ − µ2

i)
TΣ−1

2 (x∗ − µ2
i). Hence,

pODC2
(x∗)� pODC1

(x∗).
Even if the points are not uniformally distributed, it is still more likely that an ODC

with higher overlap would have higher p(x∗), since x∗ is close under expectation to
one of the centers if more spatially cohesive domains are generated which increases
with higher overlap. Our experiments also proves that the ODC concept generalizes on
three real dataset where the training points are not distributed uniformally.

More Figures and Results
figure 1 shows our analysis on ODC for M =400. We noticed sigficant drop in the
performance as M decreases. For instance when M = 200, The error for TGP best
performance increased to 43.88mm instead of 38mm.

Local Kernel Machines hyper-parameters on each dataset
The hyper parameters were learnt using cross validation on the training set for GPR,
TGP and IWTGP that we are interested in. The following subsection present the learnt
hyper-parameters and the error measures on each dataset in case of TGPs.

Poser Dataset
The parameters 2ρ2

x, 2ρ2
y , λX , and λY were assigned to 5, 5000, 10−4, and 10−4,

respectively.

3

0 0.2 0.4 0.6 0.8 1
39

39.5

40

40.5

41

41.5

42

E
rr

or

p

AB EKmeans, K’ = 1, Err = [41.53,39.23]

t = 1.0

t = 1.5625

t = 2

t = 3

t = 4

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

E
rr

or

p

AB EKmeans, K’ = 2, Err = [52.95,39.13]

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

E
rr

or

p

AB EKmeans, K’ = 3, Err = [122.62,39.51]

0 0.2 0.4 0.6 0.8 1
40

40.5

41

41.5

42

42.5

E
rr

or

p

RPC, K’ = 1, Err = [41.77,40.40]

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

E
rr

or

p

RPC, K’ = 2, Err = [107.41,41.73]

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

E
rr

or

p

RPC, K’ = 3, Err = [136.14,47.45]

(a) TGP-ODC (M=400)

0 0.2 0.4 0.6 0.8 1
46

47

48

49

50

51

52

Er
ro

r

p

AB EKmeans, K’ = 1, Err = [50.24,46.51]

t = 1.0

t = 1.5625

t = 2

t = 3

t = 4

0 0.2 0.4 0.6 0.8 1
40

50

60

70

80

90

100

Er
ro

r

p

AB EKmeans, K’ = 2, Err = [81.89,45.35]

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

Er
ro

r

p

AB EKmeans, K’ = 3, Err = [147.56,45.29]

0 0.2 0.4 0.6 0.8 1
50

51

52

53

54

55

Er
ro

r

p

RPC, K’ = 1, Err = [54.01,50.96]

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

Er
ro

r

p

RPC, K’ = 2, Err = [112.22,49.86]

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

Er
ro

r

p

RPC, K’ = 3, Err = [156.13,50.56]

(b) GPR-ODC (M=400)

Figure 1: Overlapping Domain Cover Parameter Analysis of GPR and TGP on Human
Eva Dataset (best seen in color) (M=400)

Table 1: Error and Time for Poser and Human Eva datasets (on 2.6GHZ intel core i7),
M = 800

Poser HumanEva

Error (deg) Training Time Prediction Time Error (mm) Training Time Prediction Time
TGP NN 5.43 - 188.99 sec 38.1 - 6364 sec

ODC (p = 0.9, t = 1,K ′ = 1)-Ekmeans 5.4 (3.7 +25.1) sec 16.5 sec 38.99 (2001 + 45.4) sec 298 sec
ODC (p = 0.9, t = 1,K ′ = 2)-Ekmeans 5.53 (3.7 +29.4) sec 47.04 sec 39.2 (2001 + 45.24) sec 569.6946 sec
ODC (p = 0.9, t = 1,K ′ = 3)-Ekmeans 5.4 (3.7 +28.8) sec 71.4 sec 40.9 (2001 + 45.7) sec 721.0 sec
ODC (p = 0, t = 1,K ′ = 1)-Ekmeans 7.6 (3.9 + 1.33) sec 14.8 sec 41.87 (240 + 4.9832) sec 256.7
ODC (p = 0, t = 1,K ′ = 2)-Ekmeans 12.3 (3.9 + 2.69) sec 42.25 sec 136.52 (240 + 4.7790) sec 514.93
ODC (p = 0, t = 1,K ′ = 3)-Ekmeans 12.52 (3.9 + 1.86) sec 72.38 sec 187.72 (240 + 4.75) sec 771
ODC (p = 0.9, t = 1,K ′ = 1)-RPC 5.6 (0.23 +41.6) sec 15.8 sec 39.9 (0.45 + 49.05) sec 277.25 sec
ODC (p = 0.9, t = 1,K ′ = 2)-RPC 5.52 (0.23 +43.80) sec 43.802 sec 40.41 (0.45 + 46.77) sec 677.52 sec
ODC (p = 0.9, t = 1,K ′ = 3)-RPC 5.59 (0.23 +43.05) sec 67.11 sec 41.21 (0.45 + 47.63) sec 883 sec
ODC (p = 0, t = 1,K ′ = 1)-RPC 7.7 (0.15 + 1.7) sec 13.89 sec 42.32 (0.19 + 5.3) sec 241.64 sec
ODC (p = 0, t = 1,K ′ = 2)-RPC 9.29 (0.15 + 1.8) sec 41.86 sec 58.99 (0.19 + 5.16) sec 475.14 sec
ODC (p = 0, t = 1,K ′ = 3)-RPC 12.47 (0.15 + 1.80) sec 66.42 sec 136 (0.19 + 5.2) sec 721.49 sec

GPR NN 6.77 - 24 sec 54.8 - 618 sec
ODC (p = 0.9, t = 1,K ′ = 1)-Ekmeans 6.27 (3.7 +11.1) sec 0.56 sec 49.3 (2001 + 42.85)sec 78.85 sec
ODC(p = 0.0, t = 1,K ′ = 1)-Ekmeans 7.54 (3.9 + 1.38 sec) 0.35 sec 49.6 (240 + 6.4) sec 48.1 sec
ODC (p = 0.9, t = 1,K ′ = 1)-RPC 6.45 (0.23 +17.3) sec 0.52 sec 52.8 (0.49 + 46.06) sec 64.13 sec
ODC (p = 0.0, t = 1,K ′ = 1)-RPC = [?] 7.46 (0.15 + 1.47) sec 0.27 sec 54.6 (0.261 + 4.58) sec 43.52 sec
FITC [?] 7.63 (+/- 0.4) (- + 20.63) 0.3106 68.36(+/- 0.84) - 101.5442 (+/- 1.36) sec

HumanEva Dataset
The parameters 2ρ2

x, 2ρ2
y , λX , and λY were assigned to 5, 500000, 10−3, and 10−3,

respectively.

4

Human 3.6 Dataset
The parameters 2ρ2

x, 2ρ2
y , λX , and λY were assigned to 5, 500000, 10−3, and 10−3,

respectively.

Equal Size Kmeans (EKmeans): More Details

Iterative Minimum-Distance Assignments (IMDA) k-means EKmeans
We tried another variant for Ekmeans that we call Iterative Minimum-Distance Assign-
ments (IMDA) k-means. Tis algorithm works as follows. We initialize a pool of unas-
signed points X̃ = X and initialize all clusters as empty. Given the means computed
from the previous update steps, we compute the distances d(xi, µj) for all points/center
pairs. We iteratively pick the minimum distance pair

(xp, µl) : d(xp, µl) ≤ d(xi, µj)∀xi ∈ X̃and|Cl| < N/K

and assign point xp to cluster l. The point is then removed from the pool of unassigned
points. if |Cl| = N/K, then it is marked as balanced and no longer considered. The
process is repeated until the pool is empty.

Comparison between IMDA and Assign and Balance (AB) EKmeans(presented
in the paper)
Table 2 presents the average intra measure over 10 runs of IMDA k-means and AB
kmeans algorithms, initialized at different centers, that were selected at random. As il-
lustrated in table 2, the AB kmeans outperforms IMDA k-means in these experiments,
which motivated us to utilize AB Ekmeans, which is presented in the paper, against
IMDA k-means under our ODC prediction framework. Our interpretation for these re-
sults is because AB Ekmeans initializes the assignment with an assignment that mini-
mizes J(C) = min

∑K
j=1

∑
xi∈Cj

d(xi, µj) given the cluster centers and then balance
the clusters

Table 2: J(C) of AB-kmeans and IMDA-kmeans on a dataset of 10,000 random 2D
points, averaged over 10 runs

K=5 K = 10 K=50

AB-kmeans 1077.3 540.241 105.505
IMDA-kmeans 1290.6 657.446 122.006

Error Reduction 16.53% 17.83% 13.52%

More figures on AB Ekmeans
Figure 2 shows the clustering performance on 300000 random 2D point (K=5, 57).
Figure 3 shows the clustering output of our algorithm visualized on using the first
three principal components of Human Eva training hog features. The figures shows that
the cluster are spatially cohesive but not necessarily circular. This makes the elliptic

5

distribution of the data captured by Mode 3 gives more accuracy membership measure
me to the subdomains.

(a) 5 clusters (b) 57 clusters

Figure 2: Applying our Assign and Balance variant of Kmeans on 300,000 random 2D
points

Figure 3: Human Eva clustering first three Pricipal Components

Equal Size Assignment Algorithms Pseudocode
As presented in the pape, our k-means variant algorithms modifies only the assignment
step of the standard k-means algorithm. Algorithm 1 and 2 shows the pseudo-code of
the assignments steps on IMDA-k-means and AB-k-means algorithms respectively. We
attach the MATLAB implementation of both algorithms in ”Ekmeans-assign” folder,
We plan to release the whole implementation of our paper as well as soon as we well-
document of the code.

It is also important to note that, we initialize both algorithms by the cluster centers
computed by running the regular k-means.

6

Input: X(N × dx), {µi}
K
i=1

Output: labels
1- Create a matrix D ∈ RN×K , where D[i, j] is the distance between the ith

point to the jth cluster center.
2- Get the coordinate (i∗, j∗) that maps the smallest distance in D.
3- Remove the ith∗ row from matrix D and mark it as assigned to the jth cluster
4- If the size of the cluster j achieves the ideal size (i.e. n/K), then remove the
jth column from matrix D.
5- Go to step 2 if there is still unassigned points

Algorithm 1: Iterative Minimum-Distance Assignments (IMDA) k-means: Assign-
ment Step

Input: X(N × dx), {µi}
K
i=1

Output: labels
1- Assign the points initially to its closest center; this will put the clusters into 3
groups (1) balanced clusters (2) overflowed clusters (3) under-flowed clusters.
2- Create a matrix D ∈ RN×K , where D[i, j] is the distance between the ith

point to the jth cluster center; rows are restricted points belongs only to the
overflowed clusters; columns are restricted to underflowed cluster centers
3- Get the coordinate (i∗, j∗) that maps the smallest distance in D.
4- Remove the ith∗ row from matrix D and mark it as assigned to the jth cluster
5- If the size of the cluster j achieves the ideal size (i.e. n/K), then remove the
jth column from matrix D.
6- Go to step 3 if there is still unassigned points

Algorithm 2: Assign and Balance (AB) k-means: Assignment Step

Overlapping Domain Cover(ODC) Generation-Algorithm
Algorithm 3 shows how the overlapping sub-domains are generated form the the equal
size clusters from the closest r clusters.

IWTGP integration under ODC-Framwork
Yamada et al [?] proposed the importance-weighted variant of twin Gaussian pro-
cesses [?] called IWTGP. The weights are calculated using RuLSIF [?] (relative uncon-
strained least-squares importance fitting). The weights were modeled as wα(x,θ) =∑nte

l=1 θlk(x, xl) to minimizeEpte(x)[(wα(x, θ)−wα(x))2]. where k(x, xl) = exp(−‖x−xl‖
2τ2),

wα(x) = pte(x)
(1−α)pte(x)+αptr(x) , 0 ≤ α ≤ 1. To cope with this instability issue, setting α

to 0 ≤ α ≤ 1 is practically useful for stabilizing the covariate shift adaptation, even
though it cannot give an unbiased model under covariate shift [?]. According [?] the
optimal θ̂ vector is computed in a closed form solution as follows.to

θ̂ = (Ĥ + νI)−1ĥ (6)

where Ĥl,l′ = 1−α
nte

∑nte

i=1 k(xtei , xtel k(xtei , xtel′) + α
ntr

∑ntr

j=1 k(xtrj , xtel k(xtrj , xtel′), ĥ
is nte dimensional vector with the lth element ĥl = 1

nte

∑nte

i=1 k(xtei , xtel), I is nte ×
nte-dimensional identity matrix. where nte and ntr and the number of testing and
training points respectively. Model selection of RuLSIF is based on cross-validation

7

Input: Clusters {Ck}Kk=1 Output: Overlapping subdomains {Dk}Kk=1

foreach Cluster Ck do
Compute the closest r clusters {C ′ i}

r

i=1 based on DKi = ‖µk − µi‖ , i 6= k
Let LKi = 1/DKi,WKi = LKi∑OCC

l=1 LKl

i = 1 : r

Let NPKi = floor(WKi ∗OPC), i = 1 : r
Let ExKPts = (1− p)M −

∑r
l=1NPKl

Let NPKi = NPKi + 1 , i = 1 : ExKPts
Dk = Ck
Let overflow = 0
. The following for loop goes over the r clusters on an increasing order of

DKi

for i=1 : r do
if NPKi¿ |Ci| then

overflow = overflow +NPKi − |Ci|
NPKi = |Ci|

if NPKi¡ |Ci| then
Gi = min(overflow, |Ci| −NPKi)
NPKi = NPKi +Gi
overflow = overflow −Gi

Psi = KNN(OV CKj , NPKi)
Dk = Dk ∪ Psi

for i=1 : r do
Psi = KNN(OV CKj , NPKi)
Dk = Dk ∪ Psi

. where KNN is the K-nearest neighbors algorithms. For high performance
calculation of KNN , we use FLANN [?] to calculate KNN .

Algorithm 3: Subdomains Generation (Note: All {Dk}Kk=1 are stored as indices to
X).

8

with respect to the squared-error criterion J in [?]. Having computed θ̂, each input
and output examples are simply re-weighted by w

1
2
α [?]. Therefore, the output of the

importance weighted TGP (IWTGP) is given by

ŷ = argmin
y

[KY (y, y)− 2ky(y)Tuw − ηwlog(KY (y, y)−

ky(y)TW
1
2 (W

1
2 KY W

1
2 + λyI)−1W

1
2 ky(y))]

(7)

where uw = W
1
2 (W

1
2 KXW

1
2 + λxI)−1W

1
2 kx(x), ηw = kX(x, x) − kx(x)Tuw.

IWTGP can also be solved using a second order, BFGS quasi-Newton optimizer with
cubic polynomial line search for optimal step size selection.

Training
It is not obvious how to factor out computations that does not depend on the test data

in the case of IWTGP, since the computational extensive factor(i.e. (Wi
1
2 Ki

XWi
1
2 +

λixI)−1, (Wi
1
2 Ki

Y Wi
1
2 + λiyI)−1) does depend on the test set since Wi is computed

on test time. However, we utilized the following theorem from linear algebra to help us
factor out the computation; proof is attached in the supplementary materials.

(D A D + λI)−1 = D−1A−1D−1 − λD−2A−2D−2

1 + λ · tr(D−1A−1D−1)
(8)

, where D is a diagonal matrix, I is the identity matrix, and tr(B) is the trace

of matrix B. Mapping D to Wi
1
2 1, A to either of Ki

X or Ki
Y , we can computeMi =

{Ki
X

−1
,Ki

Y

−1}. Having computed Wi on test time, (Wi
1
2 Ki

XWi
1
2 +λxI)−1, (Wi

1
2 KXWi

1
2 +

λxI)−1 could be computed in quadratic time givenMi following equation 8, since the

inverse and the power of Wi
1
2 has linear computational complexity.

Proof that (D A D + λI)−1 = D−1A−1D−1 − λ(D−1A−1D−1)2

1+λ−1·tr(D−1A−1D−1)
Kenneth

Miller [?] proposed the following Lemma on Matrix Inverse.

(G+H)−1 = G−1 − 1

1 + tr(GH−1)
G−1HG−1 (9)

Applying Miller’s lemma, where G = DAD and H = λI , leads to (D A D +

λI)−1 = D−1A−1D−1 − λ(D−1A−1D−1)2

1+λ−1·tr(D−1A−1D−1)
.

Prediction
From the above discussion, the prediction for each subdomain is computed as follows

ˆY ix∗ = argmin
Y i
x∗

[kY (Yix∗ ,Y
i
x∗)− 2ky(Yix∗)

Tuw−

ηwlog(KY (Yix∗ ,Y
i
x∗)−

ky(Yix∗)
TWi

1
2 (Wi

1
2 KY Wi

1
2 + λyI)−1

Wi
1
2 ky(Yix∗))]

(10)

1W is a diagonal matrix

9

where uw = W
1
2 (W

1
2 KXW

1
2 + λxI)−1W

1
2 kx(x), ηw = kX(x, x) − kx(x)Tuw,

(Wi
1
2 Ki

XWi
1
2 +λxI)−1, (Wi

1
2 KXWi

1
2 +λxI)−1 could be computed in quadratic time

givenMi and W . Hence, the ˆY ix∗ j has O(iters ·M)2 complexity, where iters is the
number of iterations.

IWTGP-ODC Experiments
Tables 3 and 4 details the results of IWTGP-ODC experiments on Poser and Hu-
manEva datasets in terms of error and speedup in prediction time.

IWTTGP IWTGP-ODC
(M = 800,Mtst = 418) (M = 800,Mtst = 418)

error (deg) 6.1 5.32
err reduction (deg) - 0.783

err reduction % - 12.836%
Prediction Time (sec) 360.0 26.61

speedUp - 13.5

Table 3: POSER dataset IWTGP-NN vs IWTGP-ODC

IWTGP IWTTGP-ODC
(M = Mtst = 800) (M = Mtst = 800)

error (mm) 39.1 39.3
err reduction (mm) - -0.2

err reduction % - -0.512%
Prediction Time (sec) 7938.15 569.66

speedUp - 13.92

Table 4: Humen Eva dataset: IWTGPKNN vs IWTGP-ODC

10

