Overlapping Domain Cover for Scalable and
Accurate Regression Kernel Machines

Supplementary Materials
Mohamed Elhoseiny, Ahmed Elgammal
m.elhoseiny @cs.rutgers.edu, elgammal @cs.rutgers.edu
Computer Science Department Rutgers University
New Jersey, USA

Contents
Lemma 4.1 Proof 1
More Figures and Results 3
Local Kernel Machines hyper-parameters on each dataset 3
Poser Dataset 3
HumanEvaDataset 4
Human 3.6 Dataset, 5
Equal Size Kmeans (EKmeans): More Details 5
Iterative Minimum-Distance Assignments IMDA) k-means EKmeans . . . 5
Comparison between IMDA and Assign and Balance (AB) EKmeans(presented
inthepaper) 5
More figureson ABEkmeans 5
Equal Size Assignment Algorithms Pseudocode
Overlapping Domain Cover(ODC) Generation-Algorithm 7
IWTGP integration under ODC-Framwork 7
Training 9
Prediction 9
IWTGP-ODC Experimentso v, 10

Lemma 4.1 Proof

Lemma 4.1. Under ODC notion, as the overlap p increases, the closer the nearest
model to an arbitrary test point and the more likely that model get trained on a big
neighborhood of the test point.

Proof. We start by outlining the main idea behind the proof, which is directly con-
nected to the fact that K = N/(1 — p)M, which indicates that the number of local

models increases as p increases given fixed N and M. Under the assumption that the
local models are spatially cohesive, p — 1 theoretically indicates that there is a local
model centered at each point in the space (i.e. K = c0). Hence, as p increases, the dis-
tribution of the kernel machines is the finest and the more likely a test point to find the
closest kernel machines trained on a big neighborhood of it leading to more accurate
prediction. Meanwhile, as p goes to 0, the distribution is the coarsest and the less likely
a test point finds, the closest kernel machines, trained on a big neighborhood.

Let’s assume that each kernel machine is defined on M points that are spatially
cohesive, covering the space of N points with ﬁ. Let’s assume that center of the
M points in kernel machine ¢ is p;, the the Co-variance matrix of these points are ;.
Hence

p(x|D;) = N (pi, X4)

= (QW)_dTX |Ei|_%e‘%(x—ui)TEfl(X—Mi) b

where A (p;,%;) is a normal distribution of mean y; and Co-variance matrix 3.

Let’s assume that there are two ODCs, ODC and O D(, defined on the same N

points, the first one has overlap p; and the second one is with overlap ps, such that,

p2 > pp. Let’s assume that the number of kernel machines in ODC7 and ODC, are
K, and K, respectively. Hence,

N N

Ki=— Ky=—
YT a-—p)M T A=p)M

2

Since ps > p1,0 < p; < land 0 < po < 1, then Ky > K, which indicates
that the number of kernel machines in O DC'y with higher overlap is bigger than the
number of kernel machines in ODC5. Let’s assume that there is an test point x* and
define that the probability that x* is captured by the ODC to be proportional to the
maximum probability of x* among the domains.

K K

p(x*) = > p(x*, D) =Y p(x*|D;)d(p(x*|D;) — mazie, (p(x*|D;)))
=1 =1 (3)
p(x*) = maz S p(x*|D;)
— (27T)—%Xmaxil<:1|zi|—%€—é(X*—m)TEfl(X*—m)

where §(0) = 1, 0 otherwise. The reason behind this definition of p(z*) is that our

method select the domain of preduction based on argmaz< | p(x*| D;). Hence popc, (z*)

maz;2 pope, (X*|Di) and pope, () = maz 2 pope, (x| D;).

We start by the case where the points are uniformally distributed in the space. Under
this condition and assuming that spatially cohesive domain cover, this leads to that
p(x*|D;) = N (u;, X)Vi, where X1 = g - -+ = X = X. Hence

p(x"|Dy) ox ¢~ 36 h)TET)

* * Ty —1/7% (4)
In(p(x"|Di)) oc =(X* — i) 577 (X" — pui)

Then
p(x*) = maziL p(x*|D;)

= (277)_%(2_%771@905:1|e‘%(x—m)TE’1(x—M))
o maxillee*%(xfﬂi)TE_l(X*#i)
In(p(x")) o maz’, — (x -) TS (x -)

Hence, p(x*) gets maximized as it get closer to one of the centers of the domains y;,
defined by the ODC. It is not hard to seen that that chances of x* to be closer to one of
the centers covered by O DC is higher than O DC5, especially when ps >> p;. This is
since K1 = ﬁ, Ky = ﬁ. Hence K5 > K7 when ps > p;. For instance,
when p; = 0 and p2 = 0.9, this leads to that O DC will generate K; = % domains,
while ODC5 will generate Ko = % = 10K, which is ten times more domains and
centers. The fact that there are much more domains if Ko > K; together with that
there domains are spatially cohesive leads to mcw:iK:l1 — (x* = pH)TE] Hxr — ph) >
maz? — (x* — p2)T85 1 (x* — p2). The proof of this statement derives from the fact
that maxf, — (x* — ;) TS 71 (x* — p;) is could maximized by (1) if x* gets very
close to one of p;,i = 1 : K,and (2) smaller variance |X|, which is minimized by
the nature by which ODC is created, since each domain ¢ is created by neighboring
points to its center (i.e. |21| > |¥2|). This directly leads to that if K > K; then
mazy — (3 = p}) TSN (X = pd) > maw) — (3 — p?) TS5 (x* — pd). Hence,
popc, (T*) > popc, (7).

Even if the points are not uniformally distributed, it is still more likely that an ODC
with higher overlap would have higher p(z*), since z* is close under expectation to
one of the centers if more spatially cohesive domains are generated which increases
with higher overlap. Our experiments also proves that the ODC concept generalizes on
three real dataset where the training points are not distributed uniformally.

O

More Figures and Results

figure 1 shows our analysis on ODC for M =400. We noticed sigficant drop in the
performance as M decreases. For instance when M = 200, The error for TGP best
performance increased to 43.88mm instead of 38mm.

Local Kernel Machines hyper-parameters on each dataset

The hyper parameters were learnt using cross validation on the training set for GPR,
TGP and IWTGP that we are interested in. The following subsection present the learnt
hyper-parameters and the error measures on each dataset in case of TGPs.

Poser Dataset

The parameters 2p2, 2p§, Ax, and \y were assigned to 5, 5000, 1074, and 10~%,
respectively.

AB EKmeans, K' = 1, Err — [41.53,39.23]

AB EKmeans, K' = 2, Err = [52.95,39.13]
7

AB EKmeans, K’ = 3, Err = [122.62,39.51]
o

~—— 14
415 120
80
a1 100
£ a05 2 6o £ 80
& & &
40 60
a0
395 a0
a9, 20
o 1 o 1 1
425 200
140
a2 150
120
s 415 - -
g £ 100 £ 100
&y, & &
80
50
405 60
a0 o
o 0z 04 06 08 1) 1 o oz 04 06 08 1
P P
AB EKmeans, K’ = 1, Err = [50.24,46.51] AB EKmeans, K' = 2, Err = [81.89,45.35] AB EKmeans, K' = 3, Err = [147.56,45.29]
52 100 160
51 - 20 140
50 80 120
g a0 g 70 £ 100
& & &
a8 60 80
a7 50 60
a6 40 4o,
o 1 o 1 o 1
55 120 160
140
54 100
120
= 53 - 5
£ £ s0 £ 100
[l & &
80
60
51 60
50, a0 40,
o 0z o4 06 o8 1 o 0z o4 06 o8 1 o oz o4 o6 08 1

(b) GPR-ODC (M=400)

Figure 1: Overlapping Domain Cover Parameter Analysis of GPR and TGP on Human
Eva Dataset (best seen in color) (M=400)

Table 1: Error and Time for Poser and Human Eva datasets (on 2.6GHZ intel core i7),

M = 800
‘ ‘ Poser ‘ HumanEva
Error (deg) Training Time Prediction Time | Error (mm) Training Time Prediction Time

TGP | NN 543 - 188.99 sec 38.1 - 6364 sec
ODC (p =0.9,t = 1, K’ = 1)-Ekmeans 54 (3.7 +25.1) sec 16.5 sec 38.99 (2001 + 45.4) sec 298 sec
ODC (p = 0. 1, K’ = 2)-Ekmeans 5.53 (3.7+29.4) sec 47.04 sec 39.2 (2001 + 45.24) sec 569.6946 sec
ODC (p = 0.9, 1, K’ = 3)-Ekmeans 54 (3.7 +28.8) sec 71.4 sec 40.9 (2001 + 45.7) sec 721.0 sec
ODC (p = 0,t = 1, K’ = 1)-Ekmeans 7.6 (3.9 +1.33) sec 14.8 sec 41.87 (240 +4.9832) sec 256.7
ODC (p = 0,t = 1, K’ = 2)-Ekmeans 12.3 (3.9 +2.69) sec 42.25 sec 136.52 (240 +4.7790) sec 514.93
ODC (p = 0,t = 1, K’ = 3)-Ekmeans 12.52 (3.9 + 1.86) sec 72.38 sec 187.72 (240 +4.75) sec 771
ODC (p =0.9,t =1, K’ = 1)-RPC 5.6 (0.23 +41.6) sec 15.8 sec 39.9 (0.45 +49.05) sec 277.25 sec
ODC (p = 0.9, 1, K’ = 2)-RPC 5.52 (0.23 +43.80) sec 43.802 sec 40.41 (0.45+46.77) sec 677.52 sec
ODC (p = 0.9,t =1, K’ = 3)-RPC 5.59 (0.23 +43.05) sec 67.11 sec 41.21 (0.45+47.63)sec 883 sec
ODC (p =0,t =1,K' =1)-RPC 7.7 (0.15 + 1.7) sec 13.89 sec 42.32 (0.19 +5.3) sec 241.64 sec
ODC (p = 0,1 =1, K’ = 2)-RPC 9.29 (0.15 + 1.8) sec 41.86 sec 58.99 (0.19 +5.16) sec 475.14 sec
ODC (p =0,t =1,K' = 3)-RPC 12.47 (0.15 + 1.80) sec 66.42 sec 136 (0.19 +5.2) sec 721.49 sec

GPR | NN 6.77 - 24 sec 54.8 - 618 sec
ODC (p =0.9,t = 1, K’ = 1)-Ekmeans 6.27 (3.7 +11.1) sec 0.56 sec 49.3 (2001 + 42.85)sec 78.85 sec
ODC(p = 0.0,t = 1, K’ = 1)-Ekmeans 7.54 (3.9+ 1.38sec) 0.35 sec 49.6 (240 + 6.4) sec 48.1 sec
ODC (p = 0.9, 1,K’ = 1)-RPC 6.45 (0.23 +17.3)sec 0.52 sec 52.8 (0.49 +46.06) sec ~ 64.13 sec
ODC (p =0.0,t =1,K' =1)-RPC = [?] | 7.46 (0.15+ 1.47) sec 0.27 sec 54.6 (0.261 +4.58)sec ~ 43.52 sec
FITC [?] 7.63 (+/-0.4) (- +20.63) 0.3106 68.36(+-0.84) - 101.5442 (+/- 1.36) sec

HumanEva Dataset

The parameters 2?2, 2p§, Ax, and Ay

respectively.

were assigned to 5, 500000, 1073, and 1073,

Human 3.6 Dataset

The parameters 2?2, 2p§, Ax, and \y were assigned to 5, 500000, 10~3, and 1073,
respectively.

Equal Size Kmeans (EKmeans): More Details

Iterative Minimum-Distance Assignments (IMDA) k-means EKmeans

We tried another variant for Ekmeans that we call Iterative Minimum-Distance Assign-
ments (IMDA) k-means. Tis algorithm works as follows. We initialize a pool of unas-
signed points X = X and initialize all clusters as empty. Given the means computed
from the previous update steps, we compute the distances d(x;, ;) for all points/center
pairs. We iteratively pick the minimum distance pair

(xp,) = d(Xp, 1) < d(x4,)V, € f(and|Cl| < N/K

and assign point x,, to cluster /. The point is then removed from the pool of unassigned
points. if |C;| = N/K, then it is marked as balanced and no longer considered. The
process is repeated until the pool is empty.

Comparison between IMDA and Assign and Balance (AB) EKmeans(presented
in the paper)

Table 2 presents the average intra measure over 10 runs of IMDA k-means and AB
kmeans algorithms, initialized at different centers, that were selected at random. As il-
lustrated in table 2, the AB kmeans outperforms IMDA k-means in these experiments,
which motivated us to utilize AB Ekmeans, which is presented in the paper, against
IMDA k-means under our ODC prediction framework. Our interpretation for these re-
sults is because AB Ekmeans initializes the assignment with an assignment that mini-
mizes J(C') = min Zszl >_x;ec, d(xi, j1;) given the cluster centers and then balance
the clusters

Table 2: J(C) of AB-kmeans and IMDA-kmeans on a dataset of 10,000 random 2D
points, averaged over 10 runs

K=5 K=10 K=50

AB-kmeans 1077.3 | 540.241 | 105.505
IMDA -kmeans 1290.6 | 657.446 | 122.006
Error Reduction | 16.53% | 17.83% | 13.52%

More figures on AB Ekmeans

Figure 2 shows the clustering performance on 300000 random 2D point (K=5, 57).
Figure 3 shows the clustering output of our algorithm visualized on using the first
three principal components of Human Eva training hog features. The figures shows that
the cluster are spatially cohesive but not necessarily circular. This makes the elliptic

distribution of the data captured by Mode 3 gives more accuracy membership measure
me to the subdomains.

(a) 5 clusters (b) 57 clusters

Figure 2: Applying our Assign and Balance variant of Kmeans on 300,000 random 2D
points

Riesult of PCA,

Figure 3: Human Eva clustering first three Pricipal Components

Equal Size Assignment Algorithms Pseudocode

As presented in the pape, our k-means variant algorithms modifies only the assignment
step of the standard k-means algorithm. Algorithm 1 and 2 shows the pseudo-code of
the assignments steps on IMDA-k-means and AB-k-means algorithms respectively. We
attach the MATLAB implementation of both algorithms in ”Ekmeans-assign” folder,
We plan to release the whole implementation of our paper as well as soon as we well-
document of the code.

It is also important to note that, we initialize both algorithms by the cluster centers
computed by running the regular k-means.

Input: X(N x d,), {ui}fil

Output: labels

1- Create a matrix D € RV*X where D[, j] is the distance between the i'"
point to the j*" cluster center.

2- Get the coordinate (i, j.) that maps the smallest distance in D.

3- Remove the it row from matrix D and mark it as assigned to the j** cluster
4- If the size of the cluster j achieves the ideal size (i.e. n/K), then remove the
4" column from matrix D.

5- Go to step 2 if there is still unassigned points
Algorithm 1: Iterative Minimum-Distance Assignments (IMDA) k-means: Assign-

ment Step

Input: X(N x d,), {ui}fil

Output: labels

1- Assign the points initially to its closest center; this will put the clusters into 3
groups (1) balanced clusters (2) overflowed clusters (3) under-flowed clusters.
2- Create a matrix D € RV*¥ where D[i, j] is the distance between the i‘"
point to the j*" cluster center; rows are restricted points belongs only to the
overflowed clusters; columns are restricted to underflowed cluster centers

3- Get the coordinate (i, j.) that maps the smallest distance in D.

4- Remove the i row from matrix D and mark it as assigned to the ;' cluster
5- If the size of the cluster j achieves the ideal size (i.e. n/K), then remove the
4t column from matrix D.

6- Go to step 3 if there is still unassigned points
Algorithm 2: Assign and Balance (AB) k-means: Assignment Step

Overlapping Domain Cover(ODC) Generation-Algorithm

Algorithm 3 shows how the overlapping sub-domains are generated form the the equal
size clusters from the closest r clusters.

IWTGP integration under ODC-Framwork

Yamada et al [?] proposed the importance-weighted variant of twin Gaussian pro-
cesses [?] called IWTGP. The weights are calculated using RuLSIF [?] (relative uncon-
strained least-squares importance fitting). The weights were modeled as w,(x,0) =
29 01k (x, ;) to minimize E, ;) [(wa (2, 0)—wq (x))?]. where k(x,x;) = ea:p(—“xz_ri’;l“),
we(X) = (l—a)pi t&()x-i)-apw(x)’ 0 < a < 1. To cope with this instability issue, setting
to 0 < a < 1 is practically useful for stabilizing the covariate shift adaptation, even
though itAcannot give an unbiased model under covariate shift [?]. According [?] the

optimal 8 vector is computed in a closed form solution as follows.to

6=M+v1)"'h (6)

s 1_ e [> LT " 1 1

where Hy i = S= 5709 k(x{, xj°k(x, x[7) + 72 5000 k(x, x[°k(x", x[7), h

is nse dimensional vector with the [*" element h; = nie ot k(xte,xi¢), Lis nge x

nge-dimensional identity matrix. where n;. and n;. and the number of testing and
training points respectively. Model selection of RuLSIF is based on cross-validation

Input: Clusters {C’k}szl Output: Overlapping subdomains {Dk}szl
foreach Cluster C), do

Compute the closest 7 clusters {C’li};l basedon DK; = ||ugx — il 7 £ k
Let LK; = 1/DK; WK; = —28 —i=1:r
El:ch L
Let NPK; = floor(WK; * OPC),i=1:r
Let ExKPts = (1—p)M —>,_, NPK,
Let NPK;,=NPK;+1,i=1: ExKPts
Dy, = Cy,
Let over flow = 0
> The following for loop goes over the r clusters on an increasing order of
DK;
fori=1/:rdo
over flow = over flow + NPK; — |C;]
‘ NPK; = |G
lfNPK“ ‘CZ‘ then
G; = min(over flow,|C;| — NPK;)
NPK; = NPK; + G,
over flow = over flow — G;
Psi = KNN(OVCg;, NPK;)
Dy = Dp U Ps;
for i=/:rdo
Ps;= KNN(OVCk;, NPK;)

Dy, = D, U Ps;
> where KNN is the K-nearest neighbors algorithms. For high performance

calculation of K NN, we use FLANN [?] to calculate K NN.

Algorithm 3: Subdomains Generation (Note: All {Dk}i{:1 are stored as indices to

X).

with respect to the squared-error criterion J in [?]. Having computed 6, each input

and output examples are simply re-weighted by wé [?]. Therefore, the output of the
importance weighted TGP IWTGP) is given by

§ = argmin[Ky (y,y) — 2ky (¥) 0 — nulog(Ky (y,¥)~
Y @)
iy (y)"W2 (W2 Ky W2 + A, 1) " Wk, (y))]
where u, = W2(W2KxW? + A1) "Wk, (x), 7w = kx(x,X) — ky(x)Tuy.
IWTGP can also be solved using a second order, BFGS quasi-Newton optimizer with
cubic polynomial line search for optimal step size selection.

Training
It is not obvious how to factor out computations that does not depend on the test data

R .1
in the case of IWTGP, since the computational extensive factor(i.e. (W** K\ W** +

. .1 . L1 . .
AT (WK W2 + X)) does depend on the test set since W' is computed
on test time. However, we utilized the following theorem from linear algebra to help us
factor out the computation; proof is attached in the supplementary materials.

AD?A?D?
14+ X-tr(D'A'D)

DAD+ M) =D 'A"'D! - (8)

, where D is a diagonal matrix I is the identity matrix, and ¢r(B) is the trace
of matrlx B. Mapplng D to W' e , A to either of K’ or Ky, we can compute /\/ll =

(K~ K§,7 }. Having computed W* on test time, (W’ : K\ W 2 +A. D)7, (W : KxW: iy
A1)~ could be computed in quadratic time given M? following equation 8, since the
1
inverse and the power of W*? has linear computational complexity.
—1A—1p—1y2
Proof that (DAD + AI)"! = DT'AT'D™! — 2@ 4B) Kenneth
Miller [?] proposed the following Lemma on Matrix Inverse.

1
1+tr(GH™)
Applying Miller’s lemma, where G = DAD and H = M, leads to (DA D +

—1pA—1p—1)2
M)t =DTATDT - A

(G+H) ' =Gt - G 'HG™!)

Prediction
From the above discussion, the prediction for each subdomain is computed as follows
Y., = argminlky (Y, Y, — 2k, (Y}) w,—
Yi,
nwlog(KY(Y?*7Yzl*)_) (10)
ky (YL)TW! 2 (W 2Ky W' 2 2, 1)}
.1 .
Wk (Y,)]

'W is a diagonal matrix

where u, = W2 (W2KxW? + A\, 1) "W2ky(X), 0 = kx (X, X) — ko (x) .,
(W 2 K'g(W"% +A. D)7, (W 2 KXWi% +A.I)~! could be computed in quadratic time
given M® and W. Hence, the Y;lj has O(iters - M)? complexity, where iters is the
number of iterations.

IWTGP-ODC Experiments

Tables 3 and 4 details the results of IWTGP-ODC experiments on Poser and Hu-
manEva datasets in terms of error and speedup in prediction time.

IWTTGP IWTGP-ODC
(M =800, My = 418) (M = 800, M5 = 418)
error (deg) 6.1 5.32
err reduction (deg) - 0.783
err reduction % - 12.836%
Prediction Time (sec) 360.0 26.61
speedUp - 13.5

Table 3: POSER dataset IWTGP-NN vs IWTGP-ODC

IWTGP
(M ==]\/[tst = 800)

IWTTGP-ODC
(M = M5 = 800)

error (mm) 39.1 39.3
err reduction (mm) - -0.2
err reduction % - -0.512%
Prediction Time (sec) 7938.15 569.66
speedUp - 13.92

Table 4: Humen Eva dataset: IWTGPKNN vs IWTGP-ODC

10

