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Abstract

In this paper, we present the Overlapping Domain Cover (ODC) notion for kernel ma-
chines, as a set of overlapping subsets of the data that covers the entire training set and
optimized to be spatially cohesive as possible. We propose an efficient ODC framework,
which is applicable to various regression models and in particular reduces the complexity
of Twin Gaussian Processes (TGP) regression from cubic to quadratic. We also theoret-
ically justified the idea behind our method. We validated and analyzed our method on
three human pose estimation datasets and interesting findings are discussed.

1 Introduction

Estimation of a continuous real-valued or a structured-output function from input features
is one of the critical problems that appears in many machine learning applications. Recent
advances in structure regression encouraged researchers to adopt it for formulating various
problems with high-dimensional output spaces, such as segmentation, detection, and image
reconstruction, as regression problems. However, the computational complexity of the state-
of-the-art regression algorithms limits their applicability for big data. In particular, kernel-
based regression algorithms such as Ridge Regression [12], Gaussian Process Regression
(GPR) [17], and the Twin Gaussian Processes (TGP) [2] require inversion of kernel matrices
(O(N?), where N is the number of the training points), which limits their applicability for
big data. We refer to these non-scalable versions of GPR and TGP as full-GPR and full-TGP,
respectively.

Khandekar et. al. [13] discussed proper-
ties and benefits of overlapping clusters for mini-
mizing the conductance from spectral perspective.
These properties of overlapping clusters also mo-
tivate studying scalable local prediction based on

overlapping kernel machines; see figure 1. In sum- Figure 1: 24 points, Left: 3 disjoint kernel

mary, the main question, we address in this paper, machines of 8 points, Right: 5 Overlapping
is how local kernel machines with overlapping kernel machines of 8 points. fi(x*) is the i*h

training data could help speedup the computa- kernel machine prediction for x* test point.
tions and gain accurate predictions. We achieved
considerable speedup and good performance on GPR, TGP, and IWTGP (Importance
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Weighted TGP) applied to 3D pose estimation datasets. To the best of our knowledge, our
framework is the first to achieve quadratic prediction complexity for TGP. The ODC concept
is also novel in the context of kernel machines and is shown here to be successfully appli-
cable to multiple kernel-machines. We focus here on GPR and TGP due to space, IWTGP
case (a third model) is attached in the Supplementary Materials (SM). The remainder of this
paper is organized as follows: Section 2 and 3 presents some motivating kernel machines
and the related work. Section 4 presents our approach and a theoretical justification for our
ODC concept. Section 5 and 6 presents our experimental validation and conclusion.

2 Background on Full GPR and TGP Models

In this section, we show example kernel machines that motivated us to propose the ODC
framework to improve their performance and scalability. Specifically, we review GPR for
single output regression, and TGP for structured output regression. We selected GPR and
TGP kernel machines for their increasing interest and impact. However, our framework is
not restricted to them.

GPR [17] assumes a linear model in the kernel space with Gaussian noise in a single-
valued output, i.e., y = f(x) + N (0,067), where x € R and y € R. Given a training set
{xi,yi,i =1 : N}, the posterior distribution of y given a test point X, is:

pOIxe) = N (1, =k(x:) T (K+ 07D ', 07 = k(xe,x:) —k(x:) T (K+ ;D) 'k(x)) (D

where k(x,x') is kernel defined in the input space, K is an N x N matrix, such that K(I,m) =
k(X;,Xm), K(X:) = [k(Xi,X1),, ..., k(Xs,xy)] T, T is an identity matrix of size N, o, is the
variance of the measurement noise, f = [y1,---,yn] . GPR could predict structured output
y € R%¥ by training a GPR model for each dimension. However, this indicates that GPR does
not capture dependency between output dimensions which limit its performance.

TGP [2] encodes the relation between both inputs and outputs using GP priors. This
was achieved by minimizing the Kullback-Leibler divergence between the marginal GP of
outputs (e.g., poses) and observations (e.g., features). Hence, TGP prediction is given by:

¥(xx) :arg}r]nin[ky (v,y) — 2ky (y) T (Kx 4+ Ax D) " 'ky (x.)
@3]
— nlog(ky (y,y) ~kr () (Ky + D)~ ky (¥))]

where 1 = ky (X, x:) — kx (x.) T (Ky + AxD) " ky (x,), kx (x,x') = exp( =2 "”)and ky(y,y) =
exp(— HYP il ) are Gaussian kernel functions for input feature x and output vector y, p, and
y

py are the kernel bandwidths for the input and the output . Ky (y) = [ky (¥,¥}), -, ky (¥,yn5)] ',
where N is the number of the training examples. ky (x.) = [kx (X,X1),,...,kx (x,xy)] ", and
Ax and Ay are regularization parameters to avoid overfitting. This optimization problem can
be solved using a quasi-Newton optimizer with cubic polynomial line search [2]; we denote
the number of steps to convergence as /. Table |1 shows the training an testing complexity
of full GPR and TGP models, where dy is the dimensionality of the output. Table 1 also
summarizes the computational complexity of the related approximation methods, discussed
in the following section, and our method.
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Table 1: Comparison of computational Complexity of training and testing for each of Full, NN (Near-
est Neighbor), FITC, Local-RPC, and our ODC. Training is the time include all computations that
does not depend on test data, which includes clustering in some of these methods. Testing includes
computations only needed for prediction

Training for GPR and TGP Testing for each point
Ekmeans Clustering RPC Clustering Model training GPR-Y GPR-Var TGP-Y
Full - - O(N® +N?dy) O(N - (dx +dy) O(N?-dy) O(l-N?-dy)
NN [2] O(M? - dy) OM>-dy) | O(M?+1-M?-dy)
FIC (GPR only, dy = 1 [21]) - (J(M2 (N +dy)) O(M -dy) oMm?) -
Local-RPC (only GPR, dy = 1 [5]) N-log(5) O(M?- (N +dy)) O(M -dy) o(M?) -
ODC (our framework) O(N - 5 -dx 1) O(N-/ag((,;"w)-zix) OM?- (5 +dx)) | OK'-M-(dx +dy)) OK'-M>-dy) | O(L-K'-M*-dy)

3 Related Work on Approximation Methods

Various approximation approaches have been presented to reduce the computational com-
plexity in the context of GPR. As detailed in [15], approximation methods on Gaussian Pro-
cesses may be categorized into three trends: matrix approximation, likelihood approxima-
tion, and localized regression. The matrix approximation trend is inspired by the observation
that the kernel matrix inversion is the major part of the expensive computation, and thus, ap-
proximating the matrix by a lower rank version, M < N (e.g., Nystrom Method [24]). While
this approach reduces the computational complexity from O(N3) to O(NM?) for training,
there is no guarantee on the non-negativity of the predictive variance [17]. In the second
trend, likelihood approximation is performed on testing and training examples, given M ar-
tificial examples known as inducing inputs, selected from the training set (e.g. Deterministic
Training Conditional (DTC) [18], Full Independent conditional (FIC) [21], Partial Indepen-
dent Conditional (PIC) [20]). The drawback of this trend is the dilemma of selecting M
inducing points, which might be distant from the test point, resulting in a performance de-
cay; see Table 1 for the complexity of FIC.

A third trend, localized regression, is based on the belief that distant observations are
almost unrelated. The prediction of a test point is achieved through its M nearest points. One
technique to implement this notion is through decomposing the training points into disjoint
clusters during training, where prediction functions are learned for each of them [15]. At
test time, the prediction function of the closest cluster is used to predict the corresponding
output. While this method is efficient, it introduces discontinuity problems on boundaries of
the subdomains. Another way to implement local regression is through Mixture of Experts
(MoE) as an Ensemble method to make prediction based on computing the final output by
combining outputs of local predictors called experts (see a study on MoE methods [26]).
Examples include Bayesian committee machine (BCM [22]), local probabilistic regression
(LPR [23]), mixture of Tree of Gaussian Processes (GPs) [9], and Mixture of GPs [17].
While these approaches overcome the discontinuity problem by the combination mechanism,
they suffer from intensive complexity at test time, which limits its applicability in large-scale
setting, e.g., Tree of GPs and Mixture of GPs, involve complicated integration, approximated
by computationally expensive sampling or Monte Carlo simulation.

Park etal. [15] proposed a large-scale approach for GPR by domain decomposition on
up to 2D grid on input, where a local regression function is inferred for each subdomain
such that they are consistent on boundaries. This approach obviously lacks a solution to
high-dimensional input data because the size of the grid increases exponentially with the
dimensions, which limits its applicability. More recently, [5] proposed a Recursive Parti-
tioning Scheme (RPC) to decompose the data into non-overlapping equal-size clusters, and
they built a GPR on each cluster. They showed that this local scheme gives better perfor-
mance than FIC [21] and other methods. However, this partitioning scheme obviously lacks
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consistency on the boundaries of the partitions and it was restricted to single-output GPR.
Table 1 shows the complexity of this scheme denoted by local-RPC for GPR.

Beyond GPR, we found that local regression was adopted differently in structured re-
gression models like Twin Gaussian Processes (TGP) [2], and also an data bias version of it,
denoted by IWTGP [25]. TGP and IWTGP outperform not only GPR in this task, but also
various regression models including Hilbert Schmidt Independence Criterion (HSIC) [10],
Kernel Target Alignment (KTA) [6], and Weighted-KNN [17]. Both TGP and IWTGP have
no closed-form expression for prediction. Hence, the prediction is made by gradient descent
on a function that needs to compute the inverse of both the input and output kernel matrices,
O(N?) complexity. Practically, both approaches have been applied by finding the M < N
Nearest-Neighbors (NN) of each test point in [2] and [25]. The prediction of a test point
is 0(M3) due to the inversion of M x M input and output kernel Matrices. However, NN
scheme has three drawbacks: (1) A regression model is computed for each test point, which
results in a scalability problems in prediction (i.e., Matrix inversions on the NN of each each
test point), (2) Number of neighbors might not be large enough to create an accurate predic-
tion model since it is constrained by the first drawback, (3) It is inefficient compared with
the other schemes used for GPR. Table 1 shows the complexity of this NN scheme.

4 ODC Framework

The problems of the existing approaches, presented above, motivated us to develop an ap-
proach that satisfies the properties listed in table 2. The table also shows which of these
properties are satisfied for the relevant methods. In order to satisfy all the properties, we

present the Overlapping Domain Table 2: Contrast against most relevant methods
COVCI' (ODC) notion. We de- 5] FIC/PIC [21] | NN [2] 0ODC
fine the ODC as a collection of | Accurae mﬁﬂ?;tﬂon No Yes Yes
3 1mi Efficient No Yes No Yes
overlapping subsets of the training | Efdent e ‘
. . . " . No (2D) Yes Yes Yes
points, denoted by subdomains, input dimension __
. Consistent on Boundaries Yes No Yes Yes
such that they are as spat1ally Cco- supported kernel machi GPR GPR TGP | GPR, TGP, IWTGP and others
Easy to parallelize No No Yes Yes

herent as possible. During train-
ing, an ODC is computed such that each subdomain overlaps with the neighboring sub-
domains. Then, a local prediction model (kernel machine) is created for each subdomain
and the computations that does not depend on the test data are factored out and precomputed
(e.g. inversion of matrices). The nature of the ODC generation makes these kernel machines
consistent in the overlapped regions, which are the boundaries since we constraint the subdo-
mains to be coherent. This is motivated by the notion that data lives on a manifold with local
properties and consistent connections between its neighboring regions. On prediction, the
output is calculated as a reduction function of the predictions on the closed subdomain(s).
Table 1 ( the last row) shows the complexity for our generalized ODC framework, detailed
in Sec 4.1 and 4.2. In contrast to the prior work, our ODC framework is designed to cover
structured regression setting, dy > 1 and to be applicable to GPR, TGP, and many other
models.

Notations. Given a set of input data X = {xy,---,Xy}, our prediction framework firstly
generates a set of non-overlapping equal-size partitions, C = {C},---,Ck}, such that U,C; =
X, |Ci| = N/K. Then, the ODC is defined based on them as D = {Dy,---,Dg}, such that
|Di| = MVi, D; = C;U0;,Vi. O; a the set of points that overlaps with the other partitions,
ie., 0;={x:x€{U;xC;}},such that |0;| = p-M, |C;| = (1 —p)-M, 0 < p < 1is the ratio
of points in each overlapping subdomain, D;, that belongs to/overlaps with partitions, other
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than its own, C;.

It is important to note that, the ODC could be specified by two parameters, M and p,
which are the number of points in each subdomain and the ratio of overlap respectively;
this is since K = N/(1 — p)M. This parameterization of ODC generation is reasonable for
the following reasons. First, M defines the number of points that are used to train each local
kernel machine, which controls the performance of the local prediction. Second, given M and
that K = N/(1 — p)M, p defines how coarse/fine the distribution of kernel machines are. It is
not hard to see that as p goes to 0, the generated ODC reduces to the set of non-overlapping
clusters. Similarly, as p approaches 1 —1/M, the ODC reduces to generating a cluster at each
point with maximum overlap with other clusters, i.e., K =N, |C;| =1, and |O;| =M — 1. Our
main claim is two fold. First, precomputing local kernel machines (e.g. GPR, TGP, INTGP)
during training on the ODC significantly increase the speedup on prediction time. Second,
given a fixed M and N, as p increases, local prediction performance increases, theoretically
supported by Lemma 4.1

Lemma 4.1. Under ODC notion, as the overlap p increases, the closer the nearest model to
an arbitrary test point and the more likely that model get trained on a big neighborhood of
the test point; see the proof in the Supplementary Materials (SM).

4.1 Training

There are several overlapping clustering methods that include (e.g. [16] and [3]), which
looks relevant for our framework. However these methods does not fit our purpose both
equal-size constraints for the local kernel machines. We also found them very slow in prac-
tice because their complexity varies from cubic to quadratic (with a big constant factor) on
the training-set. These problems motivated us to propose a practical method that builds over-
lapping local kernel-machines with spatial and equal-size constraints. These constraints
are critical for our purpose since the number of points in each kernel-machine determine its
local performance. Hence, our training phase is two steps: (1) the training data is split into
K = N/(1 — p)M equal-sized clusters of (1 — p)M points. (2) an ODC with K overlapping
subdomains is generated by augmenting each cluster with p - M points from the neighboring
clusters.

4.1.1 Equal-size Clustering

There are recent algorithms that deal with size constraints in clustering. For example, [27]
formulated the problem of clustering with size constraints as a linear programming problem.
However such algorithms are not computationally efficient, especially for large scale datasets
(e.g., Human3.6M). We study two efficient ways to generate equal size clusters; see Table 1
(last row) for their ODC-complexity.

Recursive Projection Clustering (RPC) [S]. In this method, the training data is partitioned
to perform GPR prediction. Initially all data points are put in one cluster. Then, two points
are chosen randomly and orthogonal projection of all the data onto the line connecting them
is computed. Depending on the median value of the projections, The data is then split into
two equal size subsets. The same process is then applied to each cluster to generate 2
clusters after [ repetitions. The iterations stops once 2/ > K. As indicated, the number of
clusters in this method has to be a power of two and it might produce long thin clusters.
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Equal-Size K-means (EKmeans). We propose a variant of k-means clustering [11] to
generate equal-size clusters. The goal is to obtain disjoint partitioning of X into clus-
ters C = {Cy,- -+ ,Ck}, similar to the k-means objective, minimizing the within-cluster sum
of squared Euclidean distances, C = arg-J(C) = mianzlzxiecjd(xi,u j)» where p; is
the mean of cluster C;, and d(-,-) is the squared distance. Optimizing this objective is
NP-hard and k-means iterates between the assignment and update steps as a heuristic to
achieve a solution; /; denotes number of iterations of kmeans. We add equal-size constraints
V(1 <i<K),|Ci|=N/K=(1-—p)M.
In order to achieve this partitioning, we propose an efficient heuristic algorithm, denoted
by Assign and Balance (AB) EKmeans. It mainly modifies the assignment step of the k-
means to bound the size of the resulting clusters. We first assign the points to their closest see
center as typically done in the assignment step of k-
means. We use C(X),) to denote the cluster assignment
of a given point x,,. This results in three types of clus-
ters: balanced, overfull, and underfull clusters. Then
some of the points in the overfull clusters are redis-
tributed to the underfull clusters by assigning each of
these points to the closest underfull cluster. This is
achieved by initializing a pool of overfull points de-
fined as X = {x,, : x, € C;,|C;| > N/K}; see Figure 2.
Let us denote the set of underfull clusters by
C={C,:|C,| < N/K}. We compute the distances
d(xi, 1 ;),¥%; € XandC; € C. Tteratively, we pick the
minimum distance pair (X, it;) and assign X, to clus-
ter C; instead of cluster C(x,). The point is then removed from the overfull pool. Once an
underfull cluster becomes full it is removed from the underfull pool, once an overfull clus-
ter is balanced, the remaining points of that cluster are removed from overfull pool. The
intuition behind this algorithms is that, the cost associated with the initial optimal assign-
ment (given the computed means) is minimally increased by each swap since we pick the
minimum distance pair in each iteration. Hence the cost is kept as low as possible while
balancing the clusters.

Figure 2: AB-EKmeans on 300,000 2D
points, K= 57

4.1.2 Overlapping Domain Cover(ODC) Model

Having generated the disjoint equal size clusters, we generate the ODC subdomains based
on the overlapping ratio p, such that p - M points are selected from the neighboring clusters.
Let’s assume that we select only the closest r clusters to each cluster, C; is closer to C; than
C if ||pt; — p ]l < |lp; — pel|- It is important to note that r must be greater than p/(1 - p)
in order to supply the required p - M points; this is since number of points in each cluster
s (1 — p)M. Hence, the minimum value for r is [(p-M)/((1—p)-M)] = [p/(1 — p)]
clusters. Hence, we parametrize r as r = [t- p/(1 — p)],t > 1. We study the effect of ¢ in
the experimental results section. Having computed r from p and ¢, each subdomain D; is
then created by merging the points in the cluster C; with p - M points, retrieved from the r
neighboring clusters. Specifically, the points are selected by sorting the points in each of r
clusters by the distance to t;. The number of points retrieved for each of the r neighboring
clusters is inversely proportional to the distance of its center to ut;. If a subset of the r clusters
are requested to retrieve more than its capacity (i.e., (1 — p)M), the set of the extra points
are requested from the remaining clusters giving priority to the closer clusters (i.e., starting
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from the nearest neighboring cluster to the cluster on which the subdomain is created). As
t =1 and p increases, all points that belong to the r clusters tends to be merged with C;.
In our framework, we used FLANN [14] for fast NN-retrieval; see pseudo-code of ODC
generation in SM.

After the ODC is generated, we compute the the sample normal distribution using the
points that belong to each subdomain. Then, a local kernel machine is trained for each of
the overlapping subdomains. We denote the point set normal distribution of the subdomains
as p(x|D;) = N (u: € Rix X! € Rox>dx); ¥/ !is precomputed during the training for later
use during the prediction. Finally, we factor out all the computations that does not depend
on the test point (for GPR, TGP, IWTGP) and store them with each sub domain as its local
kernel machine. We denote the training model for subdomain i as M, which is computed as
follows for GPR and TGP respectively; see SM for IWTGP.

GPR. Firstly, we precompute (K’] +0621)~!, where K’ is an M x M kernel matrix,
n; J

defined on the input points in D;. Each dimension j in the output could have its own hyper-
parameters, which results in a different kernel matrix for each dimension K. We also

precompute (K + G%_I)—lyj for each dimension. Hence M, = {(K + G%I)—l (K
oj;_l)‘ly,,) ,j=1:dy}.

TGP. The local kernel machine for each subdomain in TGP case is defined as Mcp =
{(Ki +AD) 7! (K 4+ AL1) 1}, where K and K} are M x M kernel matrices defined on the
input points and the corresponding output points respectively, which belong to domain i.

4.2 Prediction

ODC-Prediction is performed in three steps.

(1) Finding the closest subdomains. The closest K’ < K subdomains are determined based
on the covariance norm of the displacement of the test input from the means of the subdomain
distribution (i.e. [|x —pilly-1,i=1:K, where |[x—uilly,—1 = (x— u)TE " (x—ul). The
reason behind using the covariance norm is that it captﬁres details of the density of the
distribution in all dimensions. Hence, it better models p(x|D;), indicating better prediction
of x on D,;.

(2) Closest subdomains Prediction. Having determined the closest subdomains, predictions

are made for each of the closest clusters. We denote these predictions as {Yx’* }lK:/1 Each of
these prediction are computed according to the selected kernel machine. For GPR, predictive
mean and variance are O(M - dy) and O(M? - dy) respectively, for each output dimension.
For TGP, the prediction is O(l, - M? - dy); see Eq 2.

(3) Subdomains weighting and Final prediction. The final predictions are formulated as
Y(x,) = ZlK:ll aYs a; > O,ZIKZII a; =1. {ai}fil are computed as follows. Let the distribu-

tion of domain {D% = |[x— /|| 5! }{(/1 denotes to the distances to the closest subdomains,
i=
. . 4 . .
{LL =1/DL ) ai= L, /XL L.

It is not hard to see that when K’ = 1, the prediction step reduces to regression using
the closest subdomain to the test point. However it is reasonable in most of the prior work
to make prediction using the closest model, we generalized it to K’ closest kernel machines
and combining their predictions, so as to study how consistency of the combined prediction
behaves as the overlap increases (i.e., p); see the experiments.


Citation
Citation
{Muja and Lowe} 2009


8 ELHOSEINY, ELGAMMAL: OVERLAPPING DOMAIN COVER FOR KERNEL MACHINES

AB EKmeans, K’ = 1, Err = [51.60,48.52] AB EKmeans, K' = 2, Err = [130.23,47.66] AB EKmeans, K' = 3, Err = [173.13,47.49]
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Figure 3: ODC framework Parameter Analysis of GPR and TGP on Human Eva Dataset

S Experimental Results

We evaluated our framework on three human pose estimation datasets, Poser, HumanEva,
and Human3.6M. Poser dataset [1] consists of 1927 training and 418 test images. The image
features, corresponding to bag-of-words representation with silhouette-based shape-context
features. The error is measured by the root mean-square error (in degrees), averaged over
all joints angles, and is given by: Error(§,y*) = & X34 | [§ —y*"mod 360°||, where § € R* is
an estimated pose vector, and y* € R>* is a true pose vector. HumanEva datset [19] contains
synchronized multi-view video and Mocap data of 3 subjects performing multiple activities.
We use HOG features [7] (€ R?7) proposed in [2]. We use training and validations subsets
of HumanEva-I and only utilize data from 3 color cameras with a total of 9630 image-pose
frames for each camera. This is consistent with experiments in [2] and [25]. We use half of
the data for training and half for testing. Human3.6M [4] is a dataset of millions of Human
poses. We managed to evaluate our proposed ODC-framework on six Subjects (S1, S2, S6,
S7, S8, S9) from it, which is ~ 0.5 million poses. We split them into 67% training 33%
is testing. HOG features are extracted for 4 image-views for each pose and concatenated
into 3060-dim vector. Error for each pose, in both HEva (in mm) and Human 3.6 (in cm), is
measured as Error(§,y*) = $ X5, |9 —y*"|.

There are four control parameters in our ODC framework: M, p, t, and K’. Figure 3
shows our parameter analysis with different values of p, r and K’ on HumanEva dataset for
GPR and TGP as local regression machines, where M = 800. Each sub-figure consists of six
plots in two rows. The first row indicates the results using AB-Ekmeans clustering scheme,
while the second row shows the results for RPC clustering scheme. Each row has three
plots, one for K’ = 1, 2, and 3 respectively. Each plot shows the error of different ¢ against
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Table 3: Error & Time on Pgser and Human Eva datasets (Inttleil corhga—17 2.6GHZ). M = 800
oser umanEva
Error (deg) Training Time Prediction Time | Error (mm)  Training Time Prediction Time
TGP | NN [2] 543 - 188.99 sec 38.1 - 6364 sec
ODC (p=0.9,t = 1,K’ = 1)-Ekmeans 5.40 (3.7 +25.1 ) sec 16.5 sec 38.9 (2001 +45.4) sec 298 sec
ODC (p =0,t = 1,K’ = 1)-Ekmeans 7.60 (3.9 + 1.33) sec 14.8 sec 41.87 (240 +4.9) sec 257 sec
ODC (p=0.9,t=1,K' = 1)-RPC 5.60 (0.23 +41.6 ) sec  15.8 sec 399 (0.45+49.1)sec 277 sec
ODC (p =0, =1,K' = 1)-RPC 7.70 (0.15 + 1.7) sec 13.89 sec 42.32 (0.19 +5.2) sec 242 sec
GPR | NN 6.7 - 24 sec 548 - 618 sec
ODC (p=0.9,r = 1,K’' = 1)-Ekmeans 6.27 (3. 7+11.1)sec  0.56 sec 49.3 (2001 + 42.85)sec 79 sec
ODC(p =0.0,t = 1,K’ = 1)-Ekmeans 7.54 (3.9+1.38sec) 0.35sec 49.6 (240 + 6.4) sec 48 sec
ODC (p=0.9,r =1,k =1)-RPC 6.45 (0.23 +17.3 ) sec  0.52 sec 52.8 (0.49 +46.06) sec 64 sec
ODC (p=0.0,r = 1,K’ =1)-RPC = [5] | 7.46 (0.15+1.5)sec  0.27 sec 54.6 (0.26 +4.6) sec 44 sec
FIC [21] 7.63 (- +20.63) 0.3106 68.36 - 102 sec

p from O to 0.95; i.e., it shows how the overlap affects the performance for different values
of ¢. Each plot shows, on its top caption, the minimum and the maximum overlap regression
errors where t+ — 1. Looking at these plots, there are a number of observations:
(1) Ast — 1 (the solid red line), the behavior of the error tends to reduce as p increases, i.e.,
the overlap.
(2) Comparing different K’, the behavior of the error indicates that combining multiple pre-
dictions (i.e., K’ =2 and K’ = 3), gives poor performance, compared with K’ = 1, when
the overlap is small. However, all of them, K’ = 1, 2, and 3, performs well as p — 1; see
column 2 and 3 in figure 3. This indicates consistent prediction of neighboring subdomains
as p increases. The main reason behind this behavior is that as p increases, the local mod-
els of the neighboring subdomains normally share more training points on their boundaries,
which is reflected as shared constraints during the training of these models making them
more consistent on prediction.
(3) Comparing the first row to the second row in each subfigure, it is not hard to see that
our AB-Ekmeans partitioning scheme consistently outperforms RPC [5], e.g. the error in
cases of GPR (M=800) is 47.48mm for AB-EKmeans and 50.66mm for RPC, TGP (M=800)
is 38.8mm for AB-EKmeans and 39.8mm for RPC. This problem is even more severe when
using smaller M, e.g. the error in case of TGP (M=400) is 39.5mm for EKmeans and 47.5mm
for RPC, (A detailed plot attached in SM for M=400).
(4) TGP gives better prediction than GPR (i.e., 38mm using TGP compared with 47mm
using GPR).
(5) As M increases, the prediction error decreases. For instance, when M = 200, The error
for TGP best performance increased to 43.88mm instead of 38.9mm for M = 800. We found
these observation to be also consistent on Poser dataset.

This analysis helped us conclude recommending choosing ¢ close to 1, big overlap (p
closer to 1), and K’ = 1 is sufficient for accurate prediction.

Having accomplished the performance 10
analysis which comprehensively interprets
our parameters, we used the recommended i
setting to compare the performance with
other methods and show the benefits of this
framework. Figure 4 shows the speedup
gained by retrieving the matrix inverses on
test time, compared with computing them 10°
at test time by NN scheme. The figure
shows significant speedup from precomput- i
ing local kernel machines. 10° 10

Table 3 shows error, training time and Figure 4: Matrix Inverse.: hﬁrecomput.ation Speedup
prediction time of NN, FIC, and different of ODC framework prediction as M increases (log-
variations of ODC on Poser and Human- log scale)

3
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Eva datasets. Training time is formatted as (t. + #,), where f. is the clustering time and
t is the remaining training time excluding clustering. As indicated in the top part of table
3, TGP under our ODC-framwork can significantly speedup the prediction compared with
NN-scheme in [2], while achieving competitive performance; better in case Poser Dataset.
As illustrated in our analysis in Figure 3, higher overlap (p) gives better performance. From
time analysis perspective, higher p costs more training time due that more subdomains are
created and trained. While, Figure 3 and Table 3 indicates that AB-Ekmeans gives better per-
formance than RPC under both GPR and TGP, AB-Ekmeans takes more time for clustering.
Yet, it is feasible to compute in all the datasets, we used in our experiments. Our experiments
also indicate that as p — 1 in TGP and GPR, K’ = 2 and K’ = 3 takes double and triple the
prediction time respectively, compared with K’ = 1, with almost no error reduction. We
also compared our model to FIC in case of GPR, and our model achieved smaller error and
smaller prediction time; see bottom part in Table 3. However, TGP consistently gives better
results on both Poser and HumanEva datasets. We also tried full TGP and GPR on Poser and
Human Eva Datasets. Full TGP error is 5.35 for Poser and 40.3 for Human Eva. Full GPR
error is 6.10 for Poser and 59.62 for Human Eva. The results indicate that ODC achieves
either better or competitive to the full models.

Based on our comprehensive experiments on HumanEva and Poser datasets, we con-
ducted an experiment on Human3.6M dataset with TGP kernel machine, where M = 1390,
t=1, p=0.6,K’ = 1, Ekmeans for clustering. We achieved a speedup of 41.7X on predic-
tion time using our ODC framework compared with NN-scheme, i.e., 7 days if NN-scheme
is used versus 4.03 hours in our case. The error is 13.5 (cm) for NN and 13.8 (cm) for ODC.

6 Conclusion

We proposed an efficient ODC framework for kernel machines and validated the framework
on structured regression machines on three human pose estimation datasets. The key idea is
to equally partition the data and create cohesive overlapping subdomains, where local kernel
machines are computed for each of them. The framework is general and could be applied to
various kernel machine beyond GPR, TGP, IWTGP validated in this work. Similar to TGP
and IWTGP, our framework could be easily applied to the recently proposed Generalized
TGP [8] which is based on Sharma Mittal divergence, a relative entropy measure brought
from Physics community. We theoretically justified our framework’s notion in Lemma 4.1.
Acknowledgment. This research was partially funded by NSF award # 1409683.
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