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Abstract

Semi-global matching (SGM) is among the top-ranked stereovision algorithms. SGM
is an efficient strategy for approximately minimizing a global energy that comprises a
pixel-wise matching cost and pair-wise smoothness terms. In SGM the two-dimensional
smoothness constraint is approximated as the average of one-dimensional line optimiza-
tion problems. The accuracy and speed of SGM are the main reasons for its widespread
adoption, even when applied to generic problems beyond stereovision. This approximate
minimization, however, also produces characteristic low amplitude streaks in the final
disparity image, and is clearly suboptimal with respect to more comprehensive mini-
mization strategies.

Based on a recently proposed interpretation of SGM as a min-sum Belief Propagation
algorithm, we propose a new algorithm that allows to reduce by a factor five the energy
gap of SGM with respect to reference algorithms for MRFs with truncated smoothness
terms. The proposed method comes with no compromises with respect to the baseline
SGM, no parameters and virtually no computational overhead. At the same time it attains
higher quality results by removing the characteristic streaking artifacts of SGM.

1 Introduction
Stereovision estimates the depth of a scene from two or more images taken from slightly
different viewpoints. This is done by computing the apparent motion of the scene points
between the views. In the case of stereo-rectified image pairs [10] this motion is referred to
as disparity.

Stereo matching methods are traditionally divided [20] into local and global methods.
Local methods estimate the disparity independently for each pixel by comparing features
(usually a window around the pixel) of the left and right image. Local methods are com-
putationally cheap, however if the comparison window falls on an ambiguous area (lacking
texture or with repetitive patterns) the estimated disparity will likely be incorrect. Global
methods cope with these ambiguities by imposing the smoothness of the disparity map,
which permits to derive reasonable estimates even in the ambiguous areas.
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SGM, 8 directions MGM (our method), 8 dir.

Figure 1: Results of our baseline implementation of SGM and the proposed method MGM
for the Adirondack pair (figure 5). The diagrams on the left depict for each method the infor-
mation used by the recursive update of the red pixel in each of the 8 scans of the algorithms.

Global methods model the correspondence estimation as a global minimization usually
associated with a Markov Random Field (MRF) formulation. The resulting energy func-
tional is a sum of unary matching terms and smoothness terms that force adjacent pixels to
have similar disparities. While this problem is NP-hard, strong local minima can be com-
puted [4] and many techniques have been developed to that effect, such as move-making
approaches [4, 15] and message-passing methods [7, 14]. Their effectiveness has been re-
viewed in [24]. Most of these techniques, however, are too slow when applied to images of
a reasonable size.

Because of the ever increasing size of the problems, fast approximate algorithms produc-
ing reasonable solutions are currently preferred to global techniques [1, 5, 9, 12, 16, 19, 22,
26]. Among these approximate algorithms, semi-global matching (SGM) [12] is nowadays
one of the preferred choices for stereovision applications [11, 29] because of its efficiency
and good performance, and it has even been applied to problems beyond disparity estimation,
for example, to approximately solve the Potts model [22].

In SGM the two-dimensional smoothness constraint is efficiently approximated as the
average of one-dimensional line optimization problems. This approximation reduces at each
pixel to an optimization on a star-shaped graph (usually with 8 cardinal directions) centered
at the pixel. This structure favors the occurrence of piecewise constant solutions along these
directions. However, two adjacent scan lines share little information, so if the data term is
weak, their solutions can differ, yielding the well known streaking artifacts of SGM.

The success the SGM algorithm relies on several heuristics. In this paper we clarify some
of them by analyzing SGM in the light of its recently proposed interpretation as a min-sum
Belief Propagation algorithm by Drory et al. [6]. This leads us to propose a new version of
the algorithm that overcomes some of its limitations. Our principled interpretation of SGM
reduces by a factor five its energy gap with respect to reference optimization algorithms for
MRFs with truncated smoothness terms.

Extensive evaluation shows that the proposed algorithm removes all streaking artifacts,
improves the visual quality of the result, and computes efficiently approximate solutions to
large MRF problems. All this is achieved while keeping the flexibility of SGM, without
introducing new parameters and with a computing overhead of at most 20%.

Previous work. The strategies for finding a minimum of the global energy function differ.
Many methods simplify the 2D graph by reducing it to simpler subproblems. But these sim-
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plifications are critical as they determine the flow of information. Dynamic programming
approaches [17] perform the optimization in one dimension for each scan line individually,
which commonly leads to streaking effects. This is avoided by tree-based dynamic program-
ming approaches. Some methods derive, from the 2D graph, a single tree that spans the
entire image [27]. Others construct trees that vary their grid structure with the position of the
pixel [3]. The Fast-PD algorithm [16] exploits information from the original MRF problem
and its dual resulting in a remarkable speed-up with respect to alpha-expansion. In [5] a
very efficient block coordinate descent is used to approximately solve MRFs with truncated
smoothness terms. In SGM [12] the optimization is restricted to a star-shaped graph cen-
tered at the current pixel, which sometimes results in streaking artifacts over poorly textured
areas. Increasing the number of paths (i.e. 16 directions) may suppress them but doubles the
computational burden [12].

The technique we propose aims at increasing the support of SGM’s graph without extra
overhead, by leveraging its connection with message passing algorithms [6]. An on-line
demo of the proposed method is available on the project website1.

2 The baseline Semi-Global Matching
The Semi-Global Matching (SGM) algorithm [12] for dense stereo matching is an efficient
tool for approximate energy minimization for 2D MRF.

The stereo matching problem is formulated as finding the disparity map D that minimizes
the global energy defined on the graph G = (I,E)

E(D) = ∑
p∈I

Cp(Dp)+ ∑
(p,q)∈E

V (Dp,Dq), (1)

where Cp(d) is a unary data term that represents the pixel-wise cost of matching p for dis-
parity d ∈ D (where D = {dmin, · · · ,dmax} is the search space). The pairwise terms V (·, ·)
enforce smoothness of the solution by penalizing changes of neighboring disparities on the
edge set E (which is usually the 8-connected or 4-connected image graph). SGM considers
a particular type of pairwise term of the form

V (d,d′) =

 0 if d = d′

P1 if |d−d′|= 1
P2 otherwise

. (2)

It imposes a small penalty P1 for small jumps in disparity (up to one pixel), which are
common on slanted surfaces. The second penalty term P2 (with P2 > P1) accounts for
larger disparity jumps. The penalty P2 can be further adapted [3, 12, 22] depending on the
image content to align the disparity discontinuities with the discontinuities in the image.

The SGM algorithm computes an approximate solution to the NP-hard problem (1). The
strategy adopted by SGM consists in dividing the grid-shaped problem into multiple one-
dimensional problems defined on scan lines, which are straight lines that run through the
image in the 4 or 8 cardinal directions. For each cardinal direction r, SGM computes a
matrix of costs Lr. The costs Lr(p,d) are computed recursively from the edges of the image
along a path in the direction r:

Lr(p,d) =Cp(d)+ min
d′∈D

(Lr(p− r,d′)+V (d,d′)). (3)

1http://dev.ipol.im/~facciolo/mgm
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This recursion is in fact a dynamic programming algorithm that solves the problem restricted
to the directed graph induced by the scan line {p− ir}, i = 0,1,2 . . . Because of the special
form of the smoothness potential (2), Lr(p, ·) can be computed with just 7 instructions per
disparity. These costs are computed in each direction r and are then added to obtain an
aggregated cost volume

S(p,d) = ∑
r

Lr(p,d). (4)

The final disparity for each pixel is selected based on a Winner-Take-All (WTA) evaluation
of S(p, ·).

2.1 SGM as Min-Sum Belief Propagation
Belief Propagation (BP) [18] can be seen as an energy minimization algorithm on a graph.
The Min-sum BP is a message-passing algorithm, that computes each node’s belief (energy
min marginal) by sending messages along the edges of the graph. A message from node q to
node p is defined recursively from the messages to node q as:

mq→p(d) = min
d′∈D

(Cq(d′)+ ∑
(q,k)∈E,k6=p

mk→q(d′) + V (d,d′)). (5)

And the state belief of a node p is computed from the messages as

B(p,d) =Cp(d)+ ∑
(q,p)∈E

mq→p(d). (6)

Upon convergence argmind B(p,d) yields the estimated solution.
On a tree, BP computes the exact minimum of the energy in two passes sending mes-

sage from the leafs to the root and back. On a general graph however, BP is implemented
as an iterative algorithm, updating messages according to some schedule. The sequential
schedule [24, 25], for instance, propagates messages in raster order updating the nodes im-
mediately. Messages are typically initialized to all-zero.

Equation (5) is reminiscent of SGM. Indeed, Drory et al. [6] established the connection
between SGM and the min-sum BP algorithm. In their interpretation the SGM recursive
update formula (3) is computing the state belief of the node p during the r-oriented scan of
the image. To make it explicit:

Br(p,d) = Lr(p,d) =Cp(d)+

m(p−r)→(p)(d)︷ ︸︸ ︷
min
d′∈D

(Lr(p− r,d′)+V (d,d′)) . (7)

They also show that the aggregate of state beliefs for all 8-directions given by (4), cor-
responds (modulo a correction) to the min-marginals for the star-shaped graph centered at p
(shown in figure 1). The authors show that compared to BP, in SGM the aggregate S over-
counts the data term by a factor Ndir−1 (Ndir = 8 in the case of 8-directions). They propose
to subtract the excess data-terms directly from the aggregated costs as

Soc(p,d) = ∑
r

Lr(p,d)− (Ndir−1)Cp(d). (8)

Then, selecting the WTA over Soc(p, ·) equals to the exact minimizer of the energy restricted
to the star-shaped graph.
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(a) (b)

Figure 2: (a) Star-shaped graphs associated in SGM to two adjacent pixels. (b) Depiction of
the 8 image traversals and the corresponding recursion directions r and r⊥ in MGM.

2.2 SGM and streaking artifacts
In the light of this result we can understand the occurrence of the streaking artifacts in SGM.
Although the optimization is exact over the star-shaped graph, the graphs for two adjacent
pixels (as shown in figure 2(a)) are loosely related as they share only the nodes on a single
line (plus 4 intersection points). In this case, when the data term on the horizontal line
is weak, i.e. all disparity hypothesis are equally plausible, the messages from the vertical
directions, which are completely unrelated, can and will produce different results for each
pixel. This also means that the smoothness constraint is poorly enforced by SGM because
the messages are restricted to the 8 paths of the graph.

3 More Global Matching
Our main contribution can be summarized as a change in the recursive update formula (3).
In the spirit of the belief update formula (6) we propose to update Lr using information from
more than one direction. Concretely our strategy injects information from the 2D problem
in the processing of SGM’s 1D paths (see figure 1). This is efficiently done by incorporating
messages from the nodes visited in the previous scanline (i.e. the pixel above).

Let us consider the left-to-right direction. The image is traversed in raster order (left-to-
right, top-to-bottom) and SGM updates each node p using only the beliefs from the node on
its left Lr(p− r, ·). Instead we propose to access as well the beliefs from the node directly
above p (indicated by the direction r⊥) . Thus our proposed recursion is:

Lr(p,d) =Cp(d)+ ∑
x∈{r,r⊥}

1
2

min
d′∈D

(Lr(p−x,d′)+V (d,d′)). (9)

As a result of this multiple recursion, the belief at a given pixel is influenced by its entire
upper-left quadrant (as illustrated in figure 1). In comparison SGM recursion only sees
information from the line of pixels to its left.

For each propagation direction r we compute Lr using an adequate traversal order (de-
picted in figure 2(b)). The resulting beliefs are then combined using the over-counting cor-
rected formula (8), and the disparity is estimated by WTA. Compared to SGM, MGM only
requires a few extra operations per pixel.
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Each pass of MGM can be seen as the first iteration of a sequential belief propagation
algorithm [24, 25] with a particular scheduling order dictated by the propagation direction
(see figure 2(b)). Since the messages from the non visited nodes (below p) are initialized to
0, the update rule (9) corresponds exactly to (5). However, extension of this correspondence
beyond the first iteration is non-trivial, as messages from different passes may be needed.
The exploration of this relationship is left for future work.

Since MGM introduces dependency among the scan lines, these cannot be processed
in parallel in the same way as it is done with SGM. Parallelization in MGM is achieved
diagonal-by-diagonal. That is, during the image traversal in raster order the pixels of a
diagonal going from top-right to bottom-left can be processed in parallel, because they only
depend on their top and left neighbors (which were computed by the previous diagonal).
Applying this strategy we observed a nearly linear speed-up on a 16-core test machine (see
the supplementary material for details).

4 Experiments
We first evaluate the effectiveness of our method as a fast approximate minimization tool
for pairwise MRF. Then the improvement of the proposed method is quantified in terms of
performance on a stereo benchmark.

4.1 Evaluation for MRF minimization
We evaluated our method on pairwise MRFs from the Middlebury energy minimization
benchmark [24]. For the stereo-matching problem the MRF graphs consist of regular 4-
connected grids. We compared with well known optimization algorithms provided with the
benchmark.

Experimental setup. The disparity map from images I1 and I2 was estimated by minimiz-
ing

E(D) = ∑
p∈I

Cp(Dp)+λ ∑
(p,q)∈E

V (Dp,Dq), (10)

where E is the edge set of the 4-connected image graph and the disparities Dp are discretized
at one pixel precision. We used the absolute differences of intensities for the data term
Cp(d) = |I1(p)− I2(p+ d)| (summed over all channels for color images). This matching
cost, although not robust to radiometric changes, provides a common ground for comparison
with the methods in [24]. The smoothness term V (·, ·) is the l1-norm truncated at 2, which
amounts to taking P1 = λ and P2 = 2λ in (2). For simplicity the fine tuning of the matching
costs and variable weights were not considered here (essentially disabling the intensity cues
and the Birchfield & Tomasi costs [2] for all the methods). However different matching costs
and intensity cues can be easily incorporated in the proposed method as in SGM [3, 12]. For
instance, in section 4.2 we use census [28] as matching cost, which is robust to radiometric
changes. In this section the parameter λ is chosen for each image but is unchanged across
algorithms.

Four test images were considered. Three from the benchmark [24]: Tsukuba (16 depth
labels, λ = 20), Venus (20 depth labels, λ = 20), Teddy (60 depth labels, λ = 10), and one
stereo pair from the multi-view dataset by Strecha et al. [23]: Fountain (143 depth labels,
λ = 8).
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Tsukuba(16 labels) Teddy(60 labels) Venus(20 labels) Fountain(143 labels)
Method Egap% B(%) t(s) Egap% B(%) t(s) Egap% B(%) t(s) Egap% B(%) t(s)
TRW-S ref. 4.5 17 ref. 20.5 483 ref. 4.7 51 ref. 16.2 2170
Expansion[4] 0.09 4.6 5.9 0.13 21.2 58 0.07 4.7 12 -0.05 16.3 196
BP-S 1.78 8.2 4.7 0.68 20.1 382 0.68 6.3 18 1.32 16.9 1697
SGM4 48.3 6.6 1.0 21.7 24.2 3.7 31.4 7.4 1.8 29.0 14.5 14
ocSGM4 41.9 6.3 1.0 18.2 21.9 3.8 25.6 6.9 1.8 26.5 13.6 14
MGM4 7.5 6.7 1.2 5.5 21.4 4.5 4.2 5.8 2.0 10.7 15.8 17

Table 1: Results. Egap% is the energy gap ( E−Ere f
Ere f

× 100) of the solution with respect to
the reference solution of TRW-S (Tree-Reweighted Message Passing [14]), t(s) is the time
in seconds to compute the solution, and B(%) is the percentage of pixels that differ more
than 1 pixels from the ground truth. Two other reference methods are also included: alpha-
expansion algorithm [4], and BP-S a sequential Belief-Propagation algorithm from [24]. The
running times correspond to a single core of an Intel Core 2 Duo CPU @1.8GHz.

Evaluation. We compared five minimization algorithms: Three reference MRF optimiza-
tion techniques: TRW-S (Tree-Reweighted Message Passing) [14], the alpha-expansion graph-
cut algorithm [4], and BP-S a sequential Belief-Propagation algorithm from [24]. Our own
baseline implementation of SGM4 [12], one variant incorporating the over-counting correc-
tion ocSGM4 [6], and the proposed algorithm MGM4. Since the energy (10) is defined on a
4-connected graph, these variants only explore 4 cardinal directions.

We assessed the performance by computing the energy gap, i.e., the relative gap between
the energy of the current solution and the energy of a reference (top performing) strategy,
the bad pixel ratio, i.e., the percentage of pixels that differ more than one level from the
ground-truth, and the time in seconds for computing the solution.

Results and discussion. The results are reported in table 1 and figure 3. We note in table 3
that, in terms of energy, SGM4 and the over-counting corrected ocSGM4 [6] produce rather
distant solutions from the reference optimum. Looking at figure 3 we can see that this error
comes mainly from the regularity term (see supplementary material), which confirms that in
SGM the smoothness term of (10) is only weakly enforced. Our algorithm (MGM4), on the
other hand, consistently produces better minima than SGM4 and ocSGM4. It yields approxi-
mations that are within 10% of the optimum produced by TRW-S (the reference method), an
improvement by a factor five with respect to SGM4 or ocSGM4. Another experiment (see
supplementary material) performed on a large set of images (all the stereo pairs from the
Middlebury page: 2005, 2006, and 2014) confirms that on average MGM yields a systematic
improvement of 40% in the energy minima with respect to SGM.

In terms of efficiency MGM can be 20% slower than SGM, however the results are well
worth the time: they are more regular, present less artifacts, and better approach the minima
of the underlying energy. For problems with larger label sets, such as Fountain, MGM (with
its current non-optimized implementation) already provides an approximate solution in a
tenth of the time needed by a classic technique. We can safely say that MGM can be used
as an accurate and rather inexpensive approximation for solving problems with truncated
smoothness terms or the Potts interaction penalty [22].

In the horizontal plane of the Fountain image (figure 3) we see that SGM4 produced
smoother results than TRW-S and MGM4. The piecewise constant solutions are expected
in this experiment because the smoothness term (2) is a truncated l1-norm. With it, it is
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TRW-S (17.2s) SGM4 (1.0s) MGM4 (1.2s) MGM4 P1=λ/4

TRW-S (483.3s) SGM4 (3.7s) MGM4 (4.5s) MGM4 P1=λ/4

TRW-S (2170s) SGM4 (14s) MGM4 (17s) MGM4 P1=λ/4

Figure 3: Qualitative result comparison for the images Tsukuba and Teddy from [24], plus
a low resolution Fountain from [23]. Note that in the result of MGM4 there are no streak-
ing artifacts as in the baseline SGM4. The last column (MGM4 P1 = λ/4) and the detail
magnified in the last figure are commented in the text.

more convenient to jump three or more disparity levels once in a while (with penalty 2λ )
rather than changing disparity at each row (each with penalty λ ). This serves as evidence
that SGM4 does not actually enforce the smoothness defined in (10). Indeed, SGM4 only
enforces the regularity by lines with a weak bond between parallel lines. On the other hand,
this issue is easily solved with MGM, since it actually behaves more accordingly to the
energy (10). For instance, lowering the value of the parameter P1 (for instance P1 = λ/4,
and keeping P2 = 2λ ) prevents this effect. The results are shown in the last column of
figure 3.

4.2 Evaluation on Stereo Pairs with Ground Truth

Experimental setup. We evaluated our method using 37 full resolution stereo paris from
the Middlebury datasets (2005, 2006, and 2014) [13, 21]. The images of the 2005 and 2006
datasets have a resolution of 1.4MP and the disparity range is about 150 pixels. The 2014
dataset contains 5MP images and the disparity range goes up to 500 pixels.

Evaluation. We were interested in comparing the performance of the proposed algorithm
(MGM) with a baseline implementation of SGM and ocSGM (the over-counting corrected
SGM). We evaluated the bad pixel ratio of each method. A bad pixel is a point whose dis-
parity differs from the ground truth by more than one pixel. The three algorithms use the
same settings: 8 propagation directions and as matching cost Cp the Hamming distance of
census transform [28, 29] on a 5× 5 neighborhood (normalized by the number of chan-
nels). The parameters P1 and P2 were set for all images to P1 = 8 and P2 = 32 (as in
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Figure 4: Bad pixel ratio (% of pixels with error > 1) on the two sets of test images. Our
method yields the lowest average errors on the two datasets.

OpenCV’s SGBM). No intensity cues (adapting P2) were used, they could easily be incor-
porated though [3, 12]. To prevent influence of the post-processing steps on the evaluation,
we performed this evaluation on the unmodified outputs of the winner-take-all stage of all
methods. In the supplementary material are included results after post-processing the outputs
of SGM and MGM with a 3×3 median filter [13]. The conclusion is that, even after filtering
the results of SGM present more errors than MGM, specially in poorly textured areas.

Discussion. The accuracy of the three methods is shown in figure 4. It can be seen that
our MGM method is the most accurate on both datasets. This improvement is attained with
negligible computation overhead. Our current implementation of SGM runs in 130s on an
8-core Xeon@2.60GHz computer for a 2964×1988 image with 226 disparity levels. On the
same image the equivalent implementation of MGM runs in 137s.

A qualitative analysis of the disparity maps (figure 5) shows that MGM produces results
that are denser and cleaner, with less streaking artifacts (more results in the supplementary
material). To facilitate the qualitative evaluation these results were filtered with the left-
to-right consistency check [8] with threshold set to 1. Moreover, for all these experiments
MGM yielded (with respect to SGM) a systematic reduction of about 40% in the energy
minima for the 8-connected energy (see supplementary material).

5 Conclusion

We proposed MGM a new method for stereo matching. Our method is a variant of SGM
where messages are propagated on a quadrant of the whole graph instead of a line subgraph.
This elaborates on a recent interpretation of SGM in terms of belief propagation. With a very
small overhead MGM improves up to a factor of five the energy gap of SGM with respect to
the best global algorithms. We validated experimentally that MGM produces better results
than the baseline SGM, denser and without streaking artifacts. In summary, MGM produces
better results than the baseline SGM with practically no computation overhead.
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