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Abstract

This paper proposes a method for primal-dual convex optimization in variational

Large Deformation Diffeomorphic Metric Mapping (LDDMM) problems formulated

with robust regularizers and image similarity metrics. The method is based on Cham-

bolle and Pock primal-dual algorithm for solving general convex optimization problems.

Diagonal preconditioning is used to ensure the convergence of the algorithm to the global

minimum. We study three robust regularizers liable to provide acceptable results in dif-

feomorphic registration: Huber, V -Huber and Total Generalized Variation. Experiments

in a 2D MRI data set with complex geometry show that, for all the considered regular-

izers, the proposed method is able to converge to diffeomorphic solutions. The method

performs similarly to state of the art stationary LDDMM and log-domain diffeomor-

phic Demons in terms of the image similarity achieved after registration. In addition,

evaluation in the 3D Non-Rigid Image Registration Project (NIREP) database shows an

acceptable performance for second-order robust regularizers, close to the performance of

the state of the art diffeomorphic registration methods.

1 Introduction

Non-rigid image registration is a highly ill-posed problem. This means that a number of qual-

itatively different transformations can achieve the same image similarity after registration.

This justifies the vast literature on image registration methods with differences on transfor-

mation characterization, regularizers, image similarity metrics, optimization methods, and

additional constraints [27].

In the last decade, diffeomorphic registration has arisen as a powerful paradigm for non-

rigid image registration, with application to Computational Anatomy [16, 17, 18]. Large De-

formation Diffeomorphic Metric Mapping (LDDMM) [5] and Diffeomorphic Demons [29]

are among the most widespread methods for diffeomorphic registration. In both methods,

transformations are characterized to belong to an infinite dimensional Riemannian manifold

of diffeomorphisms, parameterized by flows of smooth vector fields in the tangent space.

The invertibility of the transformations is numerically guaranteed by the use of sufficiently
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smooth regularizers [15]. Customarily, these methods regularize the problem with the L2-

norm of some physically meaningful differential expression of the vector fields [1, 2, 4, 5,

10, 12], or with the Gaussian smoothing of the vector fields [25, 29, 30, 34].

Simultaneously to the development of the diffeomorphic registration paradigm, the com-

puter vision community has shown a growing interest in robust regularizers based on the

Total Variation (TV) norm [24]. The popularity of these regularizers has increased thanks

to the availability of optimization methods for solving this challenging problem. In par-

ticular, Chambolle and Pock proposed a fast first-order primal-dual algorithm for convex

optimization and provided the equations for various computer vision problems [7]. Their

work recovered the principles of convex analysis and Fenchel-Duality, and derived their

primal-dual algorithm from the minimization of a saddle-point problem [22]. This algo-

rithm has been successfully applied to solve different formulations of the optical flow prob-

lem [9, 21, 31, 32]. The ability of TV based regularizers to preserve discontinuities has led

these methods to occupy top positions in optical flow benchmark studies [3] and non-rigid

image registration evaluations [9].

The purpose of this article is to propose a method for primal-dual optimization of con-

vexified LDDMM problems, formulated with robust regularizers and image similarity norms

related to the TV norm. The method is based on Chambolle and Pock algorithm with di-

agonal preconditioning [20]. We study three robust regularizers liable to provide accept-

able results in diffeomorphic registration: Huber, V -Huber and Total Generalized Variation

(TGV) [6, 33]. The Huber norm is used in the image similarity term. The method is com-

pared in a complex geometry 2D MRI data set with state of the art optical flow and diffeo-

morphic registration methods. In addition, the 3D version of the method is evaluated with

the manual segmentations of the Non Rigid Image Registration Evaluation Project (NIREP)

database [26].

In the following, Section 2 describes the variational formulation associated to the convex

LDDMM problem, reviews the foundations of primal-dual optimization, and presents the

proposed primal-dual LDDMM method. Section 3 shows the experiments performed in 2D

and the evaluation in NIREP. Finally, Section 4 gathers the most remarkable conclusions of

our work.

2 Method

2.1 Variational formulation

In this section, we adopt the notation used in Beg et al. original V -L2 variational formulation

for the non-stationary LDDMM problem [5]. Let Di f f (Ω) be the manifold of diffeomor-

phisms. Let V be the corresponding tangent space at the identity. Let L = Id− γ∆ be the

autoadjoint Laplacian operator associated to the scalar product in V , providing the Rieman-

nian metric in Di f f (Ω). The LDDMM variational problem is given by the minimization of

the energy functional

E(v) = Ereg(v)+αEimg(I0 ◦φ v
1,0− I1), (1)

where the regularizer Ereg and the image similarity functional Eimg are typically given by V -

and L2-norms E(v) = 〈Lv,Lv〉L2 +α‖I0 ◦φ v
1,0− I1‖

2
L2 .

The vector field flow v≡ v(t) ∈ L2([0,1],V) provides the diffeomorphism parameterization.

The transformation φ v
1,0 is the diffeomorphism that warps the source I0 into the target image
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I1. It is the solution at time 1 to the transport equation d
dt

ϕ(t) = −v(t) ◦ϕ(t) with initial

condition ϕ(0) = id. This variational formulation is valid for both time-varying and steady

velocity field flows, yielding the non-stationary and the stationary LDDMM methods [5, 12].

As a result of the composition of the image with the diffeomorphism φ v
1,0, this energy

functional is non-convex. In order to apply Fenchel-Duality principles in the primal-dual op-

timization of the problem, the functional needs to be transformed into a convex energy [22].

This is approached by computing a first order Taylor expansion of the residual I0 ◦φ v
1,0− I1.

Thus, I0◦φ v
1,0− I1≈ I0◦φ

v0
1,0− I1+Dv(I0◦φ

v0
1,0)(v−v0), where Dv denotes the Frechet differ-

ential. The first-order term Dv(I0 ◦ φ v0
1,0)(v− v0) can be computed from the Gâteaux deriva-

tives associated to v and v0, respectively. Thus,

Dv(I0 ◦φ v
1,0)v = ∂v(I0 ◦φ v

1,0) = (∇I0)
T ◦φ v

1,0∂vφ v
1,0. (2)

The expression of the Gâteaux derivative ∂vφ v
1,0 depends on the parameterization used for the

velocity field v. In this work we use the stationary parameterization and approximate ∂vφ v
1,0

by −Dφ v
1,0 · v using the normal coordinate representation [10, 14].

Gathering these computations, the expression of the convexified variational problem re-

sults into

Econv(v) = Ereg(v)+αEimg(I0 ◦φ v0
1,0− I1 +∇(I0 ◦φ v0

1,0)
T v0−∇(I0 ◦φ v0

1,0)
T v). (3)

In the following, we will denote the convexified expression of E as follows

Econv(v) = Ereg(v)+αEimg(b1,0−A1,0v). (4)

2.2 Primal-Dual optimization

Let V , P and Q be three Hilbert vector spaces. Let K : V → P and A : V →Q be two bounded

continuous linear operators. Let F : P→ [0,+∞] and G : V → [0,+∞] be two proper, convex

and lower-semicontinuous functions involved in the minimization of the primal problem

min
v∈V

F(Kv)+G(Av). (5)

Primal-Dual optimization aims at the minimization of the primal-dual problem

min
v∈V

max
p∈P,q∈Q

〈(

K

A

)

v,

(

p

q

)〉

−

(

F∗

G∗

)(

p

q

)

, (6)

where F∗ : P→ [0,+∞] and G∗ : Q→ [0,+∞] are the Legendre-Fenchel transformations

or convex conjugates of F and G, respectively. Fenchel-Duality theorem asserts that the

primal and the dual problems attain the same solution [22]. Therefore, the minimization

of the primal problem (Equation 5) can be approached by finding the saddle point of the

primal-dual problem (Equation 6).

Data: v0 ∈V , v0 ∈V , p0 ∈ P, q0 ∈ Q, Σp, Σq, T preconditioning matrices, θ ∈ [0,1]
Result: v ∈V , p ∈ P, q ∈ Q solutions of the primal-dual problem

for n← 0 to maxits do

pn+1 = (Id +Σp∂F∗)−1(pn +ΣpKvn)
qn+1 = (Id +Σq∂G∗)−1(qn +ΣqAvn)
vn+1 = vn−TK∗pn+1−TA∗qn+1

vn+1 = vn+1 +θ (vn+1− vn)
end

Algorithm 1. Chambolle and Pock algorithm for solving Equation 6.
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Chambolle and Pock have recently proposed a first-order primal-dual algorithm for find-

ing the saddle point of the primal-dual problem [7]. It consists in the alternation of a gradient-

ascent step in the dual variables, with a gradient-descent step in the primal variables, com-

bined with an extra-gradient step in the primal variable (Algorithm 1). The algorithm can be

used whenever the subgradient resolvent operators (Id +σ∂ ·)−1 can be efficiently solved.

Since the operator K =
(

K
A

)

is usually badly scaled, step size selection has been approached

using diagonal preconditioning matrices [20]. The diagonal values are computed from the

αp- and (2−αp)-norms of the row and column vectors of the matrix expression of operator

K. The parameter αp ∈ [0,2] measures the amount of preconditioning in the primal and the

dual spaces, respectively. In this work, we will use αp = 1.0.

This algorithm has been successfully applied to different optical flow and non-rigid

sequence registration problems formulated from the minimization of a convex energy in

primal-dual form [7, 9, 32].

2.3 Primal-dual LDDMM with robust regularizers

In this work, we consider three different robust regularizers for Ereg, and the Huber norm for

Eimg. For each regularizer, we provide the saddle-point problem, Chambolle and Pock primal

and dual expressions associated to the minimization of Equation 4, and the operators used

for computing the preconditioning matrices. The numerical implementation of the method

follows the algorithmic details provided in [31].

2.3.1 Huber regularizer.

The Huber norm is defined as

‖x‖Hε =

{

|x|− ε/2, if |x|> ε

|x|2/(2ε), if |x|≤ ε
(7)

where ε > 0 defines the tradeoff between the linear and the quadratic contributions to the

norm. The Huber regularizer ‖∇v‖Hε consists in replacing the L1 norm in the TV regularizer

by the Huber norm. Therefore, ‖∇v‖Hε results into an approximation of the TV regularizer

with a continuous quadratic expression in the neighborhood at the origin of size 2ε [7].

The convex-conjugate of the Huber norm is given by (‖·‖Hε )
∗(p)=

ε‖p‖2

2
+δP(p), where

δ denotes Dirac delta function on the ball of radius one in the dual vector space P [7].

Therefore, the saddle-point problem associated to Equation 4 is given by

S(v, p,q) =< ∇v, p >−
ε‖p‖2

2
− δP(p)+< b1,0−A1,0v,q >−

ε‖q‖2

2
− δQ(q). (8)

The primal and dual equations that iteratively solve this problem using Chambolle and Pock

algorithm are

pn+1 = ΠP

(

(1+ εΣp)
−1(pn +Σp∇v̄n)

)

qn+1 = ΠQ

(

(1+ εΣq)
−1(qn +αΣq(b1,0−A1,0v̄n)

)

vn+1 = vn−T ·∇∗pn+1 +αT ·AT
1,0 ·q

n+1.

The diagonal preconditioning matrices Σp, Σq and T are built from the matrix associated to

the operatorKHε =
(

∇
−αA1,0

)

.
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2.3.2 V -Huber regularizer.

The idea of V -Huber regularizer is to replace ∇ by L in the definition of Huber regularizer,

in order to control the smoothness of the second-order differentials of the vector field. In this

case, the saddle-point problem associated to Econv is given by Equation 8, just replacing ∇
by L. The primal and dual equations that iteratively solve the problem are

pn+1 = ΠP

(

(1+ εΣp)
−1(pn +ΣpLv̄n)

)

qn+1 = ΠQ

(

(1+ εΣq)
−1(qn +αΣq(b1,0−A1,0v̄n)

)

vn+1 = vn−T ·Lpn+1 +α ·T ·AT
1,0 ·q

n+1.

The diagonal preconditioning matrices are built fromK(Hε )V =
(

L

−αA1,0

)

. It should be noticed

that the primal-dual version of the convexified original V -L2 LDDMM problem can be easily

obtained from these equations.

2.3.3 Total Generalized Variation (TGV) regularizer.

The TGV-norm is a generalization of the TV-norm that measures the magnitude of high-

order differentials [6]. The most popular regularizer is second-order TGV, T GV
(α1,α0)
2 , since

it provides a good compromise between smoothness and computational complexity. The

second-order TGV regularizer is defined as

T GV
(α1,α0)
2 (v) = min

u
α1

∫

Ω
|∇v− u|dΩ+α0

∫

Ω
|∇u|dΩ, (9)

where ∇u is the symmetric gradient tensor of the matrix field u, ∇ = (∇+∇T )/2, and the

scalars α1 and α0 weight the contributions of the first and second-order differentials, respec-

tively.

The saddle-point problem associated to Econv is given by

S(v,u, p,q,r) =< ∇v− u, p >−δPα1
(p)+< ∇u,q >−δQα0

(q)+

α < b1,0−A1,0v,r >−
ε‖r‖2

2
− δR(r), (10)

where δPα1
and δQα0

respectively denote Dirac delta function on the balls of radius α1 and

α0 in the dual spaces P and Q.

Small modifications on Chambolle and Pock primal-dual algorithm, performed to deal

with two primal variables and three dual variables [6], yield the primal and dual equations

that iteratively solve this problem

pn+1 = ΠPα1
(pn +Σp(∇v̄n− ūn))

qn+1 = ΠQα0
(qn +Σq∇ūn)

rn+1 = ΠR

(

(1+ εΣr)
−1(rn +αΣr(b1,0−A1,0v̄n)

)

vn+1 = vn−Tv∇∗pn+1−αTvAT
1,0rn+1

un+1 = un +Tupn+1−Tu∇∗qn+1.

In this case, the diagonal preconditioning matrices are built fromKTGV =





∇ −Id

0 ∇
−αA1,0 0



 .
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Figure 1: 2D MRI experiment. Source, target, and residual (I0 ◦φ v
1,0− I1) before registration.

3 Results

3.1 Results in 2D MRI

As a proof of concept, we compare primal-dual optimization in V−L2, Hε−Hε , (Hε)V −Hε ,

and T GV −Hε convex LDDMM problems with primal-dual optimization in Hε −Hε and

TGV−Hε convex optical flow problems [32], Gauss-Newton optimization in original V−L2

LDDMM problem [10], and L2− L2 log-domain diffeomorphic Demons [28]. The sym-

metric versions of all the algorithms were used in the comparison. The parameters of the

regularizers in the diffeomorphic registration methods were selected in order to provide the

minimum image similarity error while keeping the minimum of the Jacobian determinants of

the transformations above 0.1 1. The parameters of the regularizers in the optical flow meth-

ods were selected equal to the parameters of their corresponding diffeomorphic methods.

Experiments were performed in a 2D MRI dataset with complex geometry (Figure 1).

Table 1 shows the image similarity error obtained after registration. The error was measured

in terms of the L2 Mean Squared Error of the forward and backward residuals, relative to

the first iteration (MSEr). The table also shows the extrema of the Jacobian determinant

associated to the transformations φ v
1,0 and (φ v

1,0)
−1 (denoted by φ v

0,1).

All methods were able to achieve acceptable MSEr values, below 16% in all cases. The

lowest errors were obtained by V −L2 LDDMM and diffeomorphic Demons, because both

methods include the minimization of the MSE in their optimization. All the diffeomorphic

methods provided diffeomorphic solutions for the selected parameters. However, optical

flow methods provided non-diffeomorphic solutions. Since these methods do not restrict the

transformations to be diffeomorphic, the solutions are allowed to turn into non-diffeomorphic

in order to further decrease the image similarity error.

For a qualitative assessment of the registration results, Figure 2 shows the warped sources,

residuals, velocity fields, and the obtained transformations for the state of the art and the

proposed methods, respectively. From the image of the residuals after registration, it is re-

markable the low quality of the registration provided by the optical flow methods, while

the proposed primal-dual LDDMM method provides warped sources and residuals visu-

ally close to V − L2 LDDMM and diffeomorphic Demons results. The velocity fields and

transformations estimated using primal-dual LDDMM show the expected preservation of

discontinuities yielded by the robust regularizers and the smoothness of the diffeomorphic

characterization.

1 The smoothness of a given regularizer is related to the parameter selection. For this reason, parameters provid-

ing non-diffeomorphic solutions can be found for LDDMM and diffeomorphic Demons [11, 15], and the proposed

primal-dual LDDMM method. The choice of parameters providing solutions with minimum Jacobian determinant

above the given threshold allows a fair comparison among the methods.
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Method
MSEr

(I0 ◦φ v
1,0− I1)

MSEr

(I1 ◦φ v
0,1− I0)

max(Jφ v
1,0) min(Jφ v

1,0) max(Jφ v
0,1) min(Jφ v

0,1)

Hε −Hε OF 11.80 % 14.18 % 2.59 -0.53 2.93 0.05

T GV −Hε OF 10.95 % 13.38 % 3.39 -1.29 3.55 -0.15

V −L2 GN 8.68 % 9.38 % 2.95 0.14 6.19 0.32

L2−L2 DD 10.05 % 12.40 % 7.68 0.16 4.90 0.13

V −L2 PD 11.95 % 11.71 % 4.20 0.10 6.76 0.17

Hε −Hε PD 14.02 % 13.86 % 2.06 0.29 3.18 0.38

(Hε )V −Hε PD 11.90 % 11.68 % 4.45 0.10 6.34 0.16

T GV −Hε PD 15.19 % 15.20 % 2.94 0.10 3.11 0.17

Table 1: 2D MRI experiment. Forward and backward image similarity errors after registra-

tion, measured in terms of the MSE relative to the first iteration, and Jacobian determinant

extrema associated to the transformations φ v
1,0 and φ v

0,1. OF stands for optical flow, GN for

Gauss-Newton, DD for diffeomorphic Demons, and PD for primal-dual.

3.2 Evaluation in 3D NIREP database

Finally, we assess the performance of primal-dual optimization in V -L2, Hε -Hε , (Hε)V -Hε ,

and TGV-Hε convex LDDMM problems, Gauss-Newton optimization in the original V -L2

problem, and L2−L2 log-domain diffeomorphic Demons. The parameters of the regularizers

were selected with the same criterion than the 2D MRI data set. Experiments were performed

on a NVidia GeForce GTX 760 with 4 GBs of VRAM. The method associated to TGV -Hε

was implemented in the CPU since its large computational complexity in 3D hindered the

execution of experiments in the graphics device.

Table 2 shows the image similarity error and the extrema of the Jacobian determinant

obtained after registration, averaged over all the patients. The average of the resulting MSEr

values ranged between 13 and 23%. These values are acceptable for 3D image registration.

The lowest errors were obtained by (Hε )V -Hε PD method. It is remarkable that the resulting

transformations were all diffeomorphic for the selected parameters.

The evaluation is based on the accuracy of the registration results for template-based

segmentation of sufficiently locally labeled regions of interest. This evaluation approach has

been recommended for obtaining reliable measurements of the performance of non-rigid im-

age registration methods [23]. We use the manual segmentations of the 32 cortical structures

provided with the NIREP database as a gold standard. Dice Similarity Coefficient (DSC) is

selected as performance metric since this metric (or its related Jaccard coefficient) has been

extensively used in the evaluation of registration methods [13, 19, 23]. Thus, given G the

gold standard and S the segmentation provided by the registration method, Dice coefficient

is defined from the volume of the segmentations as DSC(G,S) = 2Vol(G∪ S)/(Vol(G)+

Method
MSEr

(I0 ◦φ v
1,0− I1)

MSEr

(I1 ◦φ v
0,1− I0)

max(Jφ v
1,0) min(Jφ v

1,0) max(Jφ v
0,1) min(Jφ v

0,1)

V −L2 GN 16.99 % 16.24 % 6.44 0.23 4.20 0.15

L2−L2 DD 14.69 % 15.90 % 5.06 0.13 6.52 0.18

V −L2 PD 18.77 % 20.03 % 7.96 0.17 8.48 0.17

Hε −Hε PD 21.21 % 22.37 % 3.48 0.16 6.34 0.23

(Hε )V −Hε PD 13.21 % 14.10 % 6.69 0.16 9.10 0.12

T GV −Hε PD 17.01 % 18.00 % 4.79 0.17 9.34 0.18

Table 2: 3D NIREP experiment. Mean over the NIREP database of the forward and back-

ward image similarity errors after registration, and Jacobian determinant extrema associated

to the transformations φ v
1,0 and φ v

0,1.
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Figure 2: 2D MRI experiment. Image registration results with the state of the art methods, and

the proposed method and the considered regularizers. From left to right, warped sources (I0 ◦ φ v
1,0),

residuals (I0 ◦ φ v
1,0 − I1), velocity fields, and grids of φ v

1,0 and φ v
0,1 for the methods considered in

the comparison. The velocity fields are colored following Middlebury’s coding for optical flow

(http://vision.middlebury.edu/flow). Grids best viewed with zooming.
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Method mean std median min max

V −L2 GN 0.5870 0.0852 0.5819 0.3719 0.7197

L2−L2 DD 0.6001 0.0887 0.5984 0.3641 0.7394

V −L2 PD 0.5656 0.0869 0.5764 0.3421 0.6873

Hε −Hε PD 0.5713 0.0880 0.5673 0.3671 0.7088

(Hε )V −Hε PD 0.6022 0.0843 0.6042 0.3786 0.7311

T GV −Hε PD 0.5827 0.0849 0.5752 0.3788 0.7189

Table 3: 3D NIREP evaluation. Overall volume overlap obtained by the registration meth-

ods across the 32 regions of interest.
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Figure 3: 3D NIREP evaluation. Volume overlap obtained by the registration methods. Distribution

of the Dice coefficients between the deformed and the corresponding manual target segmentations,

represented in the shape of box and whisker plots. Best viewed in color and with zooming.

Vol(S)). This metric provides the value of 1 if G and S exactly overlap and gradually de-

creases towards 0 depending on the overlap of the two volumes.

Table 3 shows the most representative statistical measurements of the DSC values ob-

tained by the registration methods computed across the 32 cortical structures. The highest

mean and median values with the smallest standard deviation were obtained by (Hε)V -Hε

PD method, followed closely by diffeomorphic Demons. V -L2 Gauss-Newton LDDMM and

TGV -Hε PD performed similarly. The lowest mean and median values were obtained by

Hε -Hε and V -L2 PD methods.

Figure 3 shows the statistical distribution of the DSC values obtained before and after

registration for each cortical structure. The second-order optimization methods (i.e. V -

L2 Gauss-Newton LDDMM and diffeomorphic Demons) performed similarly in the great

majority of cases. These methods usually outperformed V -L2 PD method. From the robust

regularizers, Hε -Hε regularizer tended to perform similarly to V -L2 primal-dual method,

usually with the worst scoring methods. It is remarkable the performance of (Hε)V -Hε ,

usually with the best scoring methods for each region. The performance of the TGV -Hε

regularizer was usually in between the best and the worst scoring methods.

Finally, Table 4 shows the computational complexity of the methods at the highest res-

olution level. Although PD methods had greater memory requirements than diffeomorphic

Demons, they outperformed both diffeomorphic Demons and V -L2 Gauss-Newton LDDMM

in terms of the computational time. The most efficient method was Hε -Hε PD, followed by

V -L2 and (Hε)V -Hε PD methods.
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Method V −L2 GN L2−L2 DD V −L2 PD Hε −Hε PD (Hε )V −Hε PD TGV −Hε PD

VRAM peak memory

(MBs)
4046 3272 4047 3840 4047 27000(CPU)

Time (seconds) 281.46 234.24 195.89 104.43 206.59 3248.83(CPU)

Table 4: 3D NIREP evaluation. Computational complexity at the highest resolution level

(image dimension 180× 210× 180). For comparison purposes, the time for V −L2 GN and

DD is provided after 100 iterations. The time for PD methods is provided after 5 warps with

20 iterations per warp.

4 Conclusions

In this work, we have proposed a method for primal-dual optimization in convex LDDMM

variational problems with robust regularizers and image similarity metrics. To our knowl-

edge, this is the first attempt to include robust regularizers in diffeomorphic registration.

Results in the 2D MRI data set have demonstrated that diffeomorphic solutions can be

obtained for Huber, V-Huber and TGV regularizers, despite the preservation of discontinu-

ities favored by the robust regularizers. The method has shown to be able to perform similarly

to state of the art diffeomorphic registration methods in terms of the image similarity after

registration.

The evaluation in the NIREP database has shown a comparable performance for V -Huber

regularizer with respect to the original V -L2 variational formulation and L2-L2 log-domain

diffeomorphic Demons. For each region, the results obtained by V -Huber regularizer were

with the best scoring methods. V -L2 and Huber regularizers consistently underperformed

in some regions. The performance of TGV regularizer was usually located above the worst

performing methods and slightly below the best performing methods. In some cases, TGV

regularizer was with the best scoring methods. Moreover, primal-dual optimization methods

(except TGV) were more efficient than diffeomorphic Demons, widely used because of its

computational efficiency.

Although the most direct area of application of the proposed method is medical imaging

in Computational Anatomy, we believe that diffeomorphic registration with robust regular-

izers may be applied to estimate diffeomorphic optical flow in non-rigid scenes of the real

world. Diffeomorphic solutions may improve the performance of methods for non-rigid

structure from motion and 3D non-rigid scene understanding that use optical flow corre-

spondences as input [8]. This will be our objective in future work.
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