Automatic Aortic Root Segmentation with Shape Constraints and Mesh Regularisation
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A non-invasive procedure called Transcatheter Aortic Valve Implantation
(TAVI) has emerged as an alternative procedure for patients suffering with
aortic stenosis, but cannot undergo standard open-heart surgery. A full
segmentation of the aortic root is important to the success of the pro-
cedure, and is essential for patient selection, procedural planning, and
post-evaluation [1].

We propose a fully-automatic, deformable model-based method to
segment the aortic root in 3D cardiac CT images. This consists of aligning
an initial mesh with an initial aortic root pose estimation, before deform-
ing the mesh towards the object boundary in the image. The estimation
of the aortic root pose can be considered as an object detection problem,
and a marginal space learning (MSL) method is adopted from [3] for this
purpose. Once the initial mesh is aligned with the estimated pose, we
implement a two-stage mesh deformation method: non-iterative bound-
ary segmentation followed by iterative boundary refinement with mesh
smoothing. Figure 1 outlines the steps taken at the testing stage for our
automatic segmentation method.
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Figure 1: Overview of the proposed automatic aortic root segmentation at
the testing stage.

The initial non-iterative process consists of deformable segmentation
with mesh regularisation followed by a statistical-shape-model (SSM)
based regularisation with thin-plate-spline (TPS) warping. The deformable
segmentation consists of a learning-based boundary detector, where each
vertex of the mesh template is adjusted to fit the object boundary along
the orthogonal direction. After boundary detection, we have a set of orig-
inal mesh vertices V, and a new set of vertex positions V' which may re-
sult in tangled and overlapping mesh faces. To address this problem, we
propose a B-spline based mesh regularisation method which estimates
a non-rigid transformation between V and V'’ before performing a free-
form-deformation (FFD) on V to fit V’. This is estimated by warping an

underlying voxel lattice controlled by a set of control points ¢l ik which
act as parameters of a B-spline.
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where B; represents the /th basis function of the B-spline, 7, j and k are the
corresponding lattice positions and u, v and w are the fractional positions
along the lattice [2]. In addition, this non-rigid transformation is estimated
in a multi-resolution procedure which is expressed as a summation of
FFDs at multiple resolutions H:
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This is followed by an SSM based regularisation with TPS warping, which
makes the process capable of large vertex deformations without introduc-
ing mesh irregularities.

Finally, a boundary refinement iterating a local deformable segmen-
tation with mesh regularisation process is applied. This process again
combines the learning-based boundary detector and B-spline based mesh
regularisation. Finally, generic mesh smoothing is used to remove any
faceted mesh faces.

Figure 2: Results of the proposed method. Each row is a result of a differ-
ent test image. The first column shows the resulting mesh. The following
columns show a selection of image slices with the segmentation results.
Green contours are the ground truth, while red contours are the segmen-
tation results.

Figure 3:
method.

Further example segmentation results with our proposed

Quantitative comparisons were carried out against a state-of-the-art
deformable model-based approach [3] and an active-shape-model based
segmentation. Example segmentation results of the proposed method are
shown in Figures 2 and 3. The proposed method achieves and average
mesh error of 1.39 &+ 0.29mm, and Hausdorff distance of 6.75 = 2.05mm.
These errors are lower than the two comparison approaches, and also re-
sults in much more regularised mesh surfaces with no tangled mesh faces.
The proposed method is not only more efficient but also more accurate
in segmenting complex anatomical structures with ambiguous image ap-
pearance.
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