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Abstract

This paper proposes a novel method for jointly estimating the track of a moving object
and the events in which it participates. The method is intended for dealing with generic
objects that are hard to localise and track with the performance of current detection
algorithms - our focus is on events involving carried objects. The tracks for other objects
with which the target object interacts (e.g. the carrying person) are assumed to be
given. The method is posed as maximisation of a posterior probability defined over event
sequences and temporally-disjoint subsets of the tracklets from an earlier tracking process.
The probability function is a Hidden Markov Model coupled with a term that penalises
non-smooth tracks and large gaps in the observed data. We evaluate the method using
tracklets output by three state of the art trackers on the new created MINDSEYE2015
dataset and demonstrate improved performance.

1 Introduction
This paper investigates whether reasoning about events that objects may participate in can
facilitate tracking. For example, in domains where objects are frequently carried, dropped
and exchanged, the trajectories of objects and the people carrying them have prototypical
spatio-temporal relationships.

In this work, we exploit the knowledge introduced by events in order to improve the
outcome of object tracking. We particularly focus on event-based tracking for domains which
tend to contain generic objects, for which it is not straightforward to train class specific
object detectors. The task of object tracking becomes especially challenging in such domains,
as false and missing detections are highly prevalent [4, 5, 14]. This leads to false tracks,
and also tracks that are heavily fragmented. We observe this phenomenon when we apply
state-of-the-art trackers [1, 12, 14].
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Furthermore, the prevalence of false and fragmented tracks makes the goal of incorporating
events particularly challenging as event based tracking is a circular problem. For example,
events such as carry and drop represent a unique spatio-temporal behaviour with respect to
an object. This characteristic behaviour of events may be used to impose a constraint on the
object’s track, such as being spatially consistent with respect to a person (carry) or a vertical
inconsistency (drop). However, in order to obtain such events we require tracks. Therefore,
this circular problem involves inferring events using reasonable tracks, and then using the
events to subsequently improve the tracks. Due to this challenge, event based tracking has
been rarely approached [2, 14, 15] in the past (§2).

Further described in §3, given a set of tracklets, the aim is to exploit the spatio-temporal
structure of tracks induced by events in order to improve object tracking. More specifically,
we exploit learned domain-specific temporal transitions between events in order to target
true positive tracklets, which we then use to form meaningful whole tracks. Our approach is
illustrated in Fig. 1 and is performed iteratively within an optimisation similar to [11].

Our framework is not constrained to using any particular tracker to build the set of tracklets
and, in principle, can be applied to any tracker. To illustrate this point, we have applied the
framework to three state-of-the-art trackers [1, 12, 14], and we evaluate them by comparing
object tracks, constructed with and without the use of events. We demonstrate that the use of
events significantly improves over each of the aforementioned trackers (§4.1).

Our approach is also able to deal with other challenges such as highly occluded objects
and different points of view (frontally, laterally and in perspective). This is shown in the
experimental validation performed on the newly created MINDSEYE2015 dataset (§4), which
contains a large number of events representing the changing relation between objects and
people, captured from three different viewpoints.

2 Related Work
The literature on carried object detection is relatively young, but rapidly growing. Earliest
works are based on silhouette and motion [3, 8]. More recently, these features have been
complemented by taking into account protrusions and the way carried objects modify human
appearance [4]. A limitation of the above approaches is that they rely heavily on fitting people
to silhouettes and on the availability of visible protrusions, respectively. Other approaches
reformulate the carried object detection problem as one of identifying pedestrians with human
walking patterns, by searching for shape outliers [10, 13] or by analysing subjects’ gait
[9], but without localising the object itself. Very few works have tried to improve tracking
by including events. Wang et al. [15] join pedestrian tracking and event detection into a
single optimisation problem, however their events describe human motion with respect to the
viewpoint (left, right, away or towards the camera) which are extrinsic rather than intrinsic
events, i.e. events are defined with respect to the viewpoint rather than the actors. In [2]
event recognition and tracking are not optimised jointly; tracking requires event knowledge,
and only running the optimisation for each event class allows to compare the results of event
choice. Carried object tracking is performed using spatial consistency between person and
object in [14], but the system only considers the carry event and is thus able to track an object
only when it is being carried.

In this paper we illustrate the benefits of jointly and simultaneously processing event
analysis and object tracking, and how we overcome most issues and limitations affecting the
works cited above. First of all, our approach does not rely on the fitting of person silhouettes
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Figure 1: We illustrate two consecutive iterations within the Joint Tracking and Event Analysis
optimisation. Given a set of tracklets T (on the left), at each iteration, a temporally-disjoint
subset ω is selected and a contiguous track Tω is produced by linearly interpolating across
any gaps. The Viterbi path S∗ of event labels in the HMM is inferred from Tω (arrow up),
leading to an HMM measure (arrow down) and combined with the spatio-temporal factors in
Equation 3 to give an overall probability. In the next iteration, a change to the subset ω is
made and the overall probability re-computed. In this case, the new configuration is accepted
since the probability is increased.

or object protrusions, and we explicitly localise the carried object. Our system is also not
dependent on the camera viewpoint, and it considers a large variety of events which are
modelled by a standard HMM approach.

3 Formulation
In this section we introduce our Joint Tracking and Event Analysis (JTEA) framework for
tracking carried objects. We generalise the definition of a carried object as any particular
object that a person has interacted with in the scene, therefore not being limited to only when
it is carried. The main novelty of JTEA is the improvement of carried object tracking by
incorporating events to enforce spatio-temporal constraints to the tracking solution. Moreover,
as a result of improved tracks, events recognition is also improved. We formulate our JTEA
approach under one objective function as described below.

3.1 Joint Tracking and Event Analysis
We assume a tracker has produced a set of tracklets T , that provide potential constituents for
a single moving object within the target scene. Although there may be more than one, we are
only interested in finding a single moving object. We also assume that there are other objects
in the scene that interact with our target moving object (typically a person or an aspect of
the scene). We refer to these objects as reference objects, R, and assume they have already
been tracked. The goal is to find the optimal object track consisting of a continuous sequence
of tracklets, influenced by spatio-temporal relationships between the target object and the
reference object tracks in R.

Each tracklet τ ∈ T is a contiguous sequence of detections, each represented by the centre
of the minimal enclosing rectangle. A candidate track Tω is defined by a subset of tracklets
ω ⊆ T such that there is no temporal overlap between tracklets in ω (we assume subsets are
disjoint in what follows). The track Tω is a time series of the detections that make up the
tracklets of ω , linearly interpolated between the end of one tracklet and the start of the next.
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Our objective is to find an optimal set of tracklets ω∗ ⊆ T and an associated optimal
sequence of event states S∗ from the set of all possible event sequences S, expressed as:

(ω∗,S∗) = argmax
ω⊆T ,S∈S

P(ω,S|R,T ) (1)

= argmax
ω⊆T ,S∈S

P(ω|S,R,T )P(S|R,T ) (2)

In Equation 1 the term P(ω,S|R,T ) evaluates the probability of each hypothesis set of
tracklets ω and a sequence of event states S, given reference tracks R and tracklet set T . The
conditional probability for ω (the first factor in Equation 2) is defined in Equation 3 and is
a product of three parts: the first two penalise non-smooth tracks and large gaps between
tracklets, and the third is an event-state dependent Gaussian observation density over position
and velocity. Although the spatial (smoothness) term may seem redundant alongside the
Gaussian observation density, it is not localised to the current time instant by virtue of its
construction with a smoothing function F, and we have found that it improves results. We
express P(ω|S,R,T ) as three terms, namely spatial, temporal and Gaussian observation,
each defined in Equation 3:

P(ω|S,R,T ) =
(

∏
i=1:||Tω ||

σ1(|T i
ω −F(Tω)

i|)︸ ︷︷ ︸
Spatial

)(
σ2(

∑
τ j∈ω

||τ j||)

||Tω ||︸ ︷︷ ︸
Temporal

)(
∏

i=1:||Tω ||
N (xi|µsi

,Σsi
)︸ ︷︷ ︸

Gaussian observation

)
(3)

The spatial and temporal terms express the probability of a trajectory from ω , independent
of the reference track R and capture standard tracking measures. The spatial term measures
the degree of spatial association between temporally consecutive detections T i

ω ∈ Tω . It is
calculated by taking the product of probabilities of a generalised logistic function σ1 based
on the absolute euclidean distances between each detection T i

ω and F(Tω)
i. σ1 returns a

value of 1 for shorter distances and decreases to 0 for larger distances. F is a smoothing
function applied to Tω and F(Tω)

i returns the smoothed corresponding point of T i
ω . This term

penalises the use of outlier tracklets in non-smooth tracks.
The temporal term penalises the gaps between the tracklets that make up the track Tω .

We obtain this measure by applying a generalised logistic function σ2 on the ratio of non
interpolated detections from tracklets in ω over the total length of the track Tω . The larger
the ratio, σ2 returns a value closer to one and vice versa. This measure promotes the use of
observed tracklets over interpolated points.

The Gaussian observation term is where the events are taken into account. It enforces a
prior distribution, based on bilateral relations between object track Tω and reference tracks R.
We calculate these relations using a function L with which we obtain an observation matrix x
i.e. x = L(Tω ,R). We therefore calculate the Gaussian observation term as a product of the
probabilities obtained from the normal distribution of individual observations xi with respect
to multiple events E, modelled by a mean µsi

and a covariance matrix Σsi
for an event si.

For the second term in Equation 2, P(S|R,T ), we assume S is independent of R and T and
define as a Markov chain on the state sequence. Thus, this term and the Gaussian observation
term in Equation 3 effectively define an HMM, which is then coupled with the smoothness
and gap-penalty terms to give the overall probability. This HMM provides a measure of how
likely pairs of an object track and reference tracks of possessive entities, conform to a model
sequence of event states. Modelling the HMM is further described in the next section.
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3.2 Modelling Events
We define our HMM model by a set of discrete events E, an event variable sn ∈ E at time n,
transition probabilities between events Pu|v = Psn=u|sn−1=v , 1 < u,v < |E|, prior probabilities
for the initial event Ps1=u and output probabilities for each event Pu(x) = Psn=u(x).

The observation vector x is composed of the relative position and velocity between the
target object and the reference objects R. Thus it has 4×|R| dimensions. We estimate the
parameters of the HMM using maximum likelihood. For this we use a training dataset that is
labelled with ground truth for the reference object track, carried object track and the events.
Given a set of video sequences, for each event, we obtain an observation matrix where for
each observation type (bilateral relation), we model a Gaussian defined by a mean and a full
covariance matrix µe and Σe respectively.

We also create a transition matrix based on the occurrence of an event u following an
event v for all frames in the videos. Similarly we learn a prior for the occurrence of an event u.
We therefore represent our HMM model as the set of Gaussians for each event, the transition
matrix, and the prior.

Thus, to test a hypothesis track Tω , given a set of reference tracks R, we can construct a
new observation matrix similar to above. By applying a Viterbi algorithm using this matrix
and the above HMM model, we obtain an HMM measure for the Gaussian observation term
along with a generated sequence of events for P(S). We further describe the HMM model and
the events used in §4.2.

3.3 Optimisation
Illustrated in Fig. 1, our optimisation process is similar to [11], where we apply a set of moves,
namely add, remove and replace, to construct successive track hypotheses. Given a set of
object tracklets T , obtained from any tracker, we initialise our object track Tω by including
only the first and last observed tracklets of T in our track hypothesis ω and obtain an initial
probability using the objective function in Equation 2. Note that if these two tracklets are
not suitable and do not belong to the optimal track hypothesis ω∗, they may be removed or
replaced in the optimisation. In each iteration of the optimisation, a tracklet τ ∈ T is randomly
sampled, weighted by a normalised distribution of tracklet lengths.

A new hypothesis can be constructed in three ways depending on the sampled tracklet
τ and the set of tracklets in ω: (i) if τ ∈ ω , we construct a new hypothesis by removing it
from ω; (ii) if τ /∈ ω and it does not temporally overlap with any other tracklets in ω , we
add it to ω and (iii) if it does temporally overlap, we replace any overlapping tracklets with
τ in ω . Based on the moves above, at each iteration we construct a new track hypothesis T
along with a new probability based on the objective function. If this probability is higher
than the previous iteration’s probability, we use the new hypothesis as the current best track
hypothesis, if not, we continue with the previous best track hypothesis.

By using this hill climbing approach, using a stopping criterion of a large number of
iterations, the optimisation terminates and provides the track hypothesis with the highest
probability. Although this approach may only reach a local optimum, in practice we have
found that in most cases there is only a minor difference from the global optimum.

In this optimisation, events play a significant role as they are constructed from the track
hypothesis in each iteration using the HMM, and they affect the suitability of new hypothesis
tracks in future iterations through the objective function. To an extent, this solves the circular
nature of the problem of joint tracking and event analysis, where both tracking and event

Citation
Citation
{Oh, Russell, and Sastry} 2009



6 TAVANAI ET AL.: JOINT TRACKING AND EVENT ANALYSIS

analysis influence and improve each other.
As previously described, any tracker may be used to obtain the set of tracklets T . To

further improve our JTEA framework, the next section describes our own tracker, which has
been specifically constructed to provide more suitable tracklets for carried object tracking.

3.4 Spatial Consistency Tracker
The goal of the Spatial Consistency Tracker (SCT), an extension of our earlier work [14],
is to obtain a set of tracklets T , while maximising the number of true positive tracklets and
minimising the false positive ones. To achieve this goal, the SCT tracker takes advantage
of relationships based on spatial consistency between the tracklets and reference objects in
R. Encoding relationships at this early stage can remove a large number of false positive
tracklets from T , the space of forming the object track hypothesis ω in JTEA. This becomes
especially important for carried objects as they can vary dramatically in size, shape and colour,
leading to a significant rise in false positives in addition to weak and partial detections due
to high levels of occlusion. This makes tracking systems prone to false tracks and heavy
fragmentation, as evidenced by applying state-of-the-art trackers to these detections.

To better capture true positive tracklets, we extend and generalise our earlier work [14]
by only using spatially consistent events (e.g. carry, static), to enforce a strong spatial
prior distribution (heatmap) that encodes spatial consistency between a carried object and
a reference object. It must be noted that only spatial consistency can capture true positive
tracklets, as only they follow a consistent behaviour relative to their interacting entities during
a spatially consistent event. This is not true however for spatially sporadic events (e.g. drop,
pickup), as in addition to true positives during these events, false positives also follow a
sporadic behaviour.

We therefore not only include the spatial relations between a carried object and a person,
as done in [14], but also with respect to the scene or potentially any other interacting entity
from R. We capture these relations as heatmaps using the same optimisation in [14]. Due to
this, the SCT tracker is more suitable for carried objects compared to generic object trackers.

4 Evaluation
Dataset Carried object detection datasets typically include only people walking with or
without carrying objects. Our system however, is designed and expected to perform when
people interact with the objects in a variety of ways (§4.2). Therefore, we created the
MINDSEYE2015 dataset, using a subset of videos from the MINDSEYE Year 2 dataset 1.

MINDSEYE2015 consists of 15 videos (5 recordings captured from 3 viewpoints), each
lasting approximately 6000 frames. These videos were converted to a resolution of 360×640
at 20 frames per second. Excluding frames where no event occurs, there are approximately
over 45 minutes of events and interactions. The videos are taken from three different view-
points, illustrated in Fig. 2, which allows a better evaluation of the capabilities of our approach
in dealing with object occlusions. The viewpoints offer different types of challenges to a
tracker: viewpoint C1 has medium levels of object occlusion and medium levels of scene
depth; viewpoint C2 has medium levels of object occlusion (when the object is held in front of
the person) and high levels of scene depth; viewpoint C3 has high levels of object occlusion
(depending on which side of the person the object is carried) and low levels of scene depth.

1http://www.visint.org/datasets
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(a) C1 (b) C2 (c) C3
Figure 2: Sample images from the MINDSEYE2015 dataset illustrating the 3 different
viewpoints C1, C2 and C3, including a person (cyan bounding box), a carried object (red
bounding box) and the event the person is performing using the object (yellow text).

Videos in the dataset show a variety of people interacting with various different objects.
In the majority of frames there are at most one person and one object, but there are cases of
more or less than one person or object present in the scene. It is also worth noting that, since
the dataset was captured outdoors, the movement of trees and cloths on the table, as well as
the change in brightness of the video due to clouds and distance of the person to the camera
cause challenges for object detectors.

As described in 4.2, we have defined 7 events to allow for a full description of the
scene with regards to the state of the carried object, from the start of its appearance to its
disappearance. This representation enables us to show the potential of using events in the
tracking process. Ground truth for person tracks, carried object tracks and events are fully
annotated. This dataset is publicly available with all ground truth annotations, carried object
detections, tracklets and final tracks2. Relevant code including the carried object detector in
[14] can be found on the JTEA webpage 3.

Preprocessing To obtain foreground masks we apply background subtraction for each frame
against a single frame containing only the background. We then threshold the subtracted mask
using the mask’s average brightness. This mostly removes noise from background motion
and gives a reliable foreground mask. To obtain people detections we use [6] with the release
version of [7]. We then apply the tracker [12] on the person detections to obtain person tracks.

As part of our approach, we initially divide the videos into clips defined by the start and
end of each ground truth carried object track. We then apply our state-of-the-art carried
object detector [14] on these clips, starting with person regions defined by previously obtained
person tracks. The detector is then run on any foreground that is not covered by a person
region. After obtaining the set of all detections, we apply three trackers (§4.1) to obtain the set
of all tracklets. For each tracklet set, we then apply JTEA (§3.1) to obtain the final tracks of
the carried objects. We evaluate our approach in terms of both tracking and event recognition.

4.1 Track Evaluation
For evaluating the tracking performance we compare the extracted tracks with the ground
truth, and calculate the F1 score on a frame by frame basis. We repeat this evaluation for
different values of overlap thresholds that defines how much a detection in a track needs to
overlap with the ground truth to be considered as a true positive.

We use three trackers: (i) our Spatial Consistency Tracker (SCT) described in §3.4, (ii) an
unmodified version of Pirsiavash et al. tracker [12] (DPG) and (iii) an unmodified version

2http://doi.org/10.5518/9
3http://www.engineering.leeds.ac.uk/joint-tracking-and-event-analysis/
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Figure 3: Performance of trackers using detections from: (a) ground truth (GT) and (b) auto-
matic (Auto) person tracks. For each of the trackers, the significant increase in performance
as a result of incorporating events (HMM) over the baseline (BASE) can be clearly seen.

of Andriyenko et al. tracker [1] (DCO). Fig. 3 illustrates the performance of two types of
approaches for each of the aforementioned trackers, (i) the full Joint Tracking and Event
Analysis approach (HMM) and (ii) the approach without event analysis (BASE) which only
uses the spatial and temporal terms in equation 3.

The results are presented in terms of an average F1 score across all videos calculated on
a frame by frame basis. We run two sets of experiments for tracking, using carried object
detections obtained from ground truth person tracks (GT) and automatic person tracks (Auto).
This is to illustrate that JTEA is not heavily dependent on highly accurate person tracks. Our
automatic person tracks obtain an average F1 score of 0.79, 0.73 and 0.58 with 50%, 60%
and 70% overlap thresholds respectively.

From the results in Fig. 3 it can be observed that: (1) the performance of tracking is signif-
icantly improved when influenced by events; (2) our SCT tracker outperforms other trackers
for the purpose of carried object tracking. It must be noted that even a 5% improvement
corresponds to approximately 3000 more true positives due to the large number of frames in
the dataset. It is also worth highlighting how the performance of the system does not drop
quickly for higher values of overlap, showing the potential of our carried object detector [14].

For a better comparison with related work, in Table 1, we provide a summary of perfor-
mance indexes computed at 20% overlap, a value typically employed in the literature for
carried object tracking [4, 5]. Since there is no major difference between the GT and Auto
results, also showing the robustness of our approach to the quality of person tracks, we only
provide detailed information for the GT evaluation.

F1 Precision Recall Accuracy Run Time
SCT HMM 0.80 0.81 0.79 0.67 < 25 min
SCT BASE 0.76 0.77 0.75 0.61 < 25 min
DCO HMM 0.75 0.76 0.73 0.59 < 5 min
DCO BASE 0.70 0.72 0.69 0.54 < 5 min
DPG HMM 0.68 0.69 0.67 0.52 < 1 min
DPG BASE 0.66 0.67 0.66 0.50 < 1 min

Table 1: Performance indexes of carried object tracks at 20% overlap using GT person tracks.
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Figure 4: Gaussians in the HMM model for each event, based on the object-person velocities
relation only, in the x and y dimensions. The direction and magnitude of events is captured
relative to the (0,0) coordinate, defining absolute consistency. For example, raise is mostly
horizontally consistent, however, it is vertically inconsistent in an upward direction.

Again, it can be easily verified that, for all the different indexes, the SCT tracker is
consistently better, and that event detection always improves the tracking performance. Note
that the run times in Table 1 are for the trackers only, and that JTEA ran an additional 5
minutes for each tracker. If the SCT tracker is optimised however, it is expected to run within
a much shorter time. All given times are calculated using a single core on an Intel Xeon
E5-2665 Processor @2.40GHz.

4.2 Event Evaluation
We initially describe the modelling of events within an HMM, followed by quantitative results.

HMM Modelling We use seven types of events in which an object participates in, relative
to two types of reference entities, the person and scene. These events are Carry, Static (object
is stationary), Pickup, Putdown, Drop, Raise and Roll (object is moving on the ground).

To train the HMM model and learn the above events, we take as input ground truth object
and person tracks along with a scene bounding box which covers the entire image frame. As
described in section 3.2, we construct an observation matrix for each event based on position
and velocity, in the x and y dimensions relative to two reference entities, person and scene.
For each event, we obtain a mean and covariance matrix which we use in our final HMM
model along with prior probabilities of events and a transition matrix constructed from event
ground truth. Sample Gaussian models are illustrated in Fig. 4. The above HMM training is
performed within five folds (one for each recording in the dataset). To test an object track
from a video, we use the HMM from the fold that the video was not trained on.

Results In addition to the evaluations illustrating improvement in tracking using events in
our JTEA framework, we also present an evaluation on the event analysis aspect of JTEA. We
present the results of event classification obtained with three different approaches: (a) events
obtained from ground truth object and person tracks in folds against ground truth events; (b)
events obtained from final tracks generated by the SCT HMM GT tracker; (c) events obtained
from final tracks given by SCT BASE GT.

In Fig. 5 (a), the confusion matrix shows that the HMM approach to modelling events
for carried objects is suitable for the problem. Confusion matrix (b) shows that HMM based
event classification notably improves over the baseline (c) as a direct result of using improved
tracks using JTEA. Since the improvement of tracks was due to the use of events, by using
our JTEA framework, the tracks and the events jointly influence and improve each other.

Some of the misclassifications in the confusion matrices in Figures 5 (b) and (c) are
caused by incorrect HMM predictions due to the similarity in behaviour of events. For
example, the carry and roll events have a similar horizontal motion and only differ in
terms of their possessive entities, person and scene respectively. However, another reason for



10 TAVANAI ET AL.: JOINT TRACKING AND EVENT ANALYSIS

0.86

   

0.02

0.07

0.23

0.02

0.29

   

0.96

   

   

   

   

0.18

0.06

0.02

0.96

   

0.08

0.02

0.12

0.04

0.01

   

0.91

0.11

   

0.08

   

   

   

0.02

0.45

   

0.05

0.04

   

0.02

   

   

0.96

   

   

0.01

   

   

0.13

   

0.29

Carry Static PickupPutdown Drop Raise Roll

Carry

Static

Pickup

Putdown

Drop

Raise

Roll

0.78

0.04

0.09

0.21

0.45

0.10

0.46

0.01

0.62

0.05

0.01

   

0.29

0.04

0.16

0.08

0.79

0.11

0.17

0.47

0.17

0.02

0.03

0.05

0.49

0.08

0.02

0.19

0.02

0.02

0.01

0.15

0.20

0.01

0.04

   

   

   

   

   

0.05

   

0.01

0.22

0.02

0.03

0.10

0.06

0.09

Carry Static PickupPutdown Drop Raise Roll

Carry

Static

Pickup

Putdown

Drop

Raise

Roll

0.68

0.19

0.23

0.35

0.52

0.09

0.40

   

0.51

0.02

0.02

   

0.01

0.05

0.23

0.11

0.71

0.18

0.17

0.46

0.26

0.02

0.01

0.01

0.25

0.08

0.06

0.03

0.06

0.02

0.02

0.18

0.22

0.14

0.05

   

   

0.01

0.01

   

0.21

   

0.01

0.16

0.01

0.01

0.01

0.02

0.20

Carry Static PickupPutdown Drop Raise Roll

Carry

Static

Pickup

Putdown

Drop

Raise

Roll

(a) HMM Train Test (b) SCT HMM GT (c) SCT BASE GT
Figure 5: Event classification confusion matrices for three different approaches using a frame
by frame evaluation.

misclassifications is due to a frame by frame evaluation. For example, drop being misclassified
as carry, or raise being misclassified as pickup, is due to the drop event occurring directly
after a carry event or a raise after a pickup. Therefore, it is extremely challenging to predict
when an event exactly finishes or starts, allowing these misclassifications to occur due to the
next event being predicted slightly earlier or later.

To further clarify our event evaluation, we report on the number of correct event classifica-
tions in Table 2. In this table, the ground truth based classification in (a) allows for consistently
better results in all classes, but the HMM event recognition also improves substantially over
the baseline’s performance (64.2% vs. 53.9% correct classifications respectively).

Carry Static Pickup Putdown Drop Raise Roll Total Total %
Sum GT Frames 10787 36578 1402 1521 83 530 259 51160 100
HMM Train Test 9559 35337 1340 1379 37 508 74 48234 94.3
SCT HMM 8382 22537 1108 742 17 28 24 32838 64.2
SCT BASE 7398 18630 994 375 18 113 53 27581 53.9

Table 2: Total number of true positive event detections based on a frame by frame evaluation.

5 Conclusions
Despite the increasing efforts put by the computer vision community into tracking objects
and people from videos, few approaches have investigated the benefit of performing tracking
jointly with event analysis. In this work we have presented a novel approach to the problem
of tracking objects which people may interact with in various ways. In our JTEA optimisation
procedure an optimal subset of tracklets are chosen that define the carried object track. The
search procedure leading to this object track is influenced by events, modelled via an HMM
which uses the object track to infer events.

We have shown that the inclusion of event analysis in this circular optimisation process
significantly improves the performance of three different trackers. Moreover, our SCT tracker
outperforms the other two trackers, due to its robustness to false positives as a results of using
spatial consistency between the object and the possessive entity. We have also shown that
while improving tracking, event classifications are simultaneously obtained and improved.

While our approach is reasonably robust to multiple people and objects being present
in the scene, if the number of people and object further increases, it introduces challenging
complexities. We are thus currently working on extending our approach to include multi-
person, multi-object events such as giving, exchanging or replacing objects.
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