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The perspective-n-point (PnP) problem, which estimates 3D rotation and
translation of a calibrated camera from n pairs of known 3D points and
corresponding 2D image points, is a classical problem but still funda-
mental in the computer vision community. It is well studied that the PnP
problem can be solved by at least three points [1]. If n ≥ 4, the PnP
problem becomes a nonlinear problem where the number of the solutions
depend on n and the shape of the scene. This paper proposes an efficient,
scalable, and globally optimal DLS method parameterized by Cayley rep-
resentation, which has been regarded as a unsuitable parametrization due
to its singularity.

First we derive a new optimality condition without Lagrange multi-
pliers. Letting pi = [xi,yi,zi]

T be an i-th 3D point and mi = [ui,vi,1]T be
the corresponding calibrated image point in homogeneous coordinates,
the PnP problem can be formulated as a nonlinear optimization

min
R,t

n

∑
i=1

∥∥[mi]× (Rpi + t)
∥∥2

s.t. RT R = I, det(R) = 1

(1)

where [ ]× denotes a matrix representation of the vector cross product.
The optimal translation t can be expressed as a function of R since Eq. (1)
is a linear least squares problem of t. If we define M ∈ R9×9 by a sym-
metric coefficient matrix computed from pi and mi, Lagrange function of
Eq. (1) can be written as

L(R,S,λ ) =
1
2

rT Mr− 1
2

trace
(

S(RT R− I)
)
−λ (det(R)−1). (2)

Here, r is a vector form of R, λ is a Lagrange multiplier, and S ∈ R3×3

is a symmetric matrix of Lagrange multipliers. Then, the first-order opti-
mality condition is given by

∂L
∂R

= mat(Mr)−RS−λR = 0, (3)

∂L
∂S

= RT R− I = 0, (4)

∂L
∂λ

= det(R)−1 = 0, (5)

where mat( ) is a reshaping operator from a 9× 1 vector to a 3× 3
square matrix. Multiplying RT from the left-hand and the right-hand side
of Eq. (3), we have

RT mat(Mr) = S+λ I, (6)

mat(Mr)RT = R(S+λ I)RT . (7)

Since S+λ I is a symmetric matrix, the left-hand side of Eqs. (6) and (7)
must be symmetric matrices. Hence, we obtain a new optimality condition
where the Lagrange multipliers are eliminated:

P = RT mat(Mr)−mat(Mr)T R = 0, (8)

Q = mat(Mr)RT −Rmat(Mr)T = 0. (9)
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Figure 1: Computational time for varying 4≤ n≤ 2000 and fixed σ = 2.0

Let Pj,k and Q j,k be the ( j,k) element of P and Q, respectively. Obviously
the diagonal elements are zeros, Pj, j = Q j, j = 0. On the other hand, the
non-diagonal elements are second degree polynomials in R. Due to the
symmetry, Pj,k = Pk, j and Q j,k = Qk, j, we have six polynomials in total:

P1,2 = 0, P1,3 = 0, P2,3 = 0,
Q1,2 = 0, Q1,3 = 0, Q2,3 = 0.

(10)

Although Eq. (10) is derived from a general rotation parameteriza-
tion, any parameterizations satisfying Eqs. (4), (5), and (10) are usable
for solving the PnP problem. By using Kukelova et al.’s automatic Gröb-
ner basis solver, we compared three types of parameterizations: general
rotation matrix, quaternion, and Cayley parameterization. Table 1 is a
comparison of the above parameterizations with existing methods. For
efficiency and stability, this paper selects Cayley parameterization whose
elimination template and action matrix are the smallest among the three
representations.

The proposed method was evaluated on synthetic data with existing
methods in terms of robustness against image noise and computational
time. While the proposed method has the same robustness as the state-of-
the-art, OPnP [5], the computational time is less than 3 msec for almost
all cases. As shown in Fig. 1, it is the fastest especially for n≥ 400 points.

The conclusion is that the new optimality condition without the La-
grange multipliers can be solved by any types of rotation parameteriza-
tions. Furthermore, Cayley parameterization is suitable for realtime ap-
plications, such as augmented reality and visual SLAM, where hundreds
or thousands of the points is not a rare situation.
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Table 1: Comparison of rotation parameterizations
Existing methods Proposed params

DLS [2] OPnP [5] UPnP [3] Rotation Quaternion Cayley
(Cayley) (Non-unit Quat.) (Quaternion) Matrix

# of unknowns 3 4 4 9 4 3
# of equations 3 4 8 27 7 6
# of solutions 27 40 8 40 80 40
singularity yes no no no no yes
elim. templ. 120×120 348×376 141×149 1936×1976 630×710 124×164
action matrix 27×27 40×40 8×8 40×40 80×80 40×40


