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In this paper, we tackle the interactive image segmentation problem.
Unlike the regular image segmentation problem, the user provides ad-
ditional constraints that guide the segmentation process. In some algo-
rithms, like [1, 4], the user provides scribbles on foreground/background
(Fg/Bg) regions. In other algorithms, like [6, 8], the user is required to
provide a bounding box or an enclosing contour to surround the Fg object,
other outside pixels are constrained to be Bg. In our problem, we consider
scribbles as the form of user-provided annotation.

Introducing suitable features in the scribble-based Fg/Bg segmenta-
tion problem is crucial. In many cases, the object of interest has differ-
ent regions with different color modalities. The same applies to a non-
uniform background. Fg/Bg color modalities can even overlap when the
appearance is solely modeled using color spaces like RGB or Lab. There-
fore, in this paper, we purposefully discriminate Fg scribbles from Bg
scribbles for a better representation. This is achieved by learning a dis-
criminative embedding space from user-provided scribbles. The transfor-
mation between the original features and the embedded features is calcu-
lated. This transformation is used to project unlabeled features onto the
same embedding space. The transformed features are then used in a su-
pervised classification manner to solve the Fg/Bg segmentation problem.
We further refine the results using a self-learning strategy, by expanding
scribbles and recomputing the embedding and transformations.

Figure 1 illustrates the motivation for this paper. Color features usu-
ally cannot capture different modalities available in the scribbles and suc-
cessfully distinguish Fg from Bg at the same time. As we can see in
figure 1(b), the RGB color space will eventually mix Fg/Bg scribbles. On
the other hand, figure 1(c) shows that a well-defined embedding space can
clearly distinguish between Fg and Bg scribbles, while preserving differ-
ent color modalities within each scribble.

Figure 1: The effect of discriminative embedding. Left (a): Image with provided
user scribbles; red for Fg and blue for Bg. Middle (b): 3D plot of the RGB chan-
nels for the provided scribbles. The scribbles are mixed in the RGB color space.
Right (c): 3D plot of the first 3 dimensions of our discriminative embedding. Color
modalities present in the scribbles are preserved. Note that the Fg has two modal-
ities, namely skin color and jeans. Also, the Bg has two modalities: the sky and
horse body.

Our contributions in this paper are multifold; First, we present a
novel representation of image features in the scribble-based Fg/Bg seg-
mentation problem. Second, we utilize this representation in two novel
interactive segmentation algorithms: (i) One-pass supervised algorithm,
which we extend to (ii) a self-learning semi-supervised algorithm. Third,
we present an extensive evaluation on a standard dataset with clear im-
provements over state-of-the-art algorithms.

The proposed segmentation algorithm learns a discriminative embed-
ding space for the scribbles using a supervised dimensionality reduction
technique, like LDA [2, 3] or LFDA [7]. LDA seeks to maximize the
between-class separation while minimizing the within-class proximity.
LFDA extends LDA by preserving the locality of features that belong
to the same class. This is illustrated in figure 1, where Fg has two modal-
ities (skin color and jeans) and Bg also has two modalities (sky and horse
body). We then use the learned transformation matrix to transform pix-
els’ color features by projecting them onto the new embedding space.
Finally, we classify every pixel as Fg or Bg based on its embedding coor-
dinates. To enhance the classification, we use an iterative version which

Transformation Method | Jaccard Index
No transformation 0.549 £ 0.260
1-pass LDA 0.627 £ 0.179
Iterative LDA 0.636 £ 0.180
1-pass LFDA 0.664 £ 0.184
Iterative LFDA 0.678 £ 0.180

Table 1: Segmentation results on ISEG dataset

expands the original scribbles and recomputes the whole pipeline until a
stopping criterion is met. A final post processing step is used to remove
small islands as done in [5]. Our methods are proved to outperform state-
of-the-art algorithms on the standard ISEG dataset [4]. Table 1 shows
the segmentation result of different feature embeddings. It is clear that
careful embedding can elevate the results significantly. Figure 2 shows
qualitative results of our approach.

Figure 2: Qualitative results for 6 out of 151 images. First and third columns
show the original image with user scribble annotation. Second and fourth columns
show our output.
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