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Real-time visual localisation is a key technology enabling mobile loca-
tion applications [7], virtual and augmented reality [1] and robotics [3].
The recent availablity of low-cost GPU hardware and GPGPU program-
ming has enabled a new class of ‘direct’ visual localisation methods that
make use of every pixel from an input image for tracking and matching
[6], in contrast to traditional feature-based methods that only use a subset
of the input image. The additional information available to direct meth-
ods localising against a dense 3D map increases robustness against typical
failure modes for feature-based methods, such as motion blur and view-
point change [2]. In this paper we present a visual localisation system
which utilises the entropy-based Normalised Information Distance (NID)
metric for image registration.

For computational reasons, existing direct methods generally min-
imise a cost function based on photometric error on a per-pixel basis
(e.g. [6]), which assumes both the live image and the reference map are
embedded in the same space. Equation (1) defines such a metric based on
the sum of squared differences between corresponding pixels in a refer-
ence image (Ir) and a synthetic image (Is).

SSD(Ir, Is) = ∑
x∈Ir

‖Ir (x)− Is (x)‖2, (1)

where x = (u,v)T is a pixel location within the image.
Although photoconsistency is efficient to compute and find deriva-

tives for (in order to use in an optimisation framework), as mentioned in
[6] it suffers from a number of limitations. Principally, it requires Is pro-
vide a photorealistic rendering of the scene, such that the resulting syn-
thetic image matches the reference image Ir on a pixel-by-pixel basis. A
true match under significant appearance changes would require modelling
of the material and illumination properties of the real-world environment,
along with the response of the sensor. This limitation restricts photocon-
sistency to applications involving frame-to-frame tracking, where the syn-
thetic image Is can be derived from a warping of the previous reference
image Ir, or applications in small indoor environments with controlled
illumination where the scene does not change over time [6].

In this paper we instead make use of the Normalised Information Dis-
tance (NID) metric, given by Equation (2) [4].

NID(Ir, Is) =
H(Ir, Is)−MI(Ir; Is)

H(Ir, Is)
(2)

where H(Ir, Is) and MI(Ir, Is) are the joint entropy and mutual information
of the two images respectively, defined as follows:

MI(Ir; Is) = H(Ir)+H(Is)−H(Ir, Is) (3)

H(Is) =−
n

∑
b=1

ps (b) log(ps (b)) ; H(Ir, Is) =−
n

∑
a,b=1

pr,s (a,b) log(pr,s (a,b))

where H(Ir) is defined similarly to H(Is). ps and pr,s are the marginal
and joint discrete distributions of the images Ir and Is, represented by n-
bin discrete histograms where a and b are individual bin indices.

As NID is not a function of the actual values of the pixels in the image,
but of their distribution, NID provides robustness to illumination change
and sensor modality. Unlike mutual information, NID is a true metric,
which satisfies the triangle inequality, and is normalised over the num-
ber of pixels used in the calculation, thus allowing comparisons between
image pairs with differing amounts of overlap.

In order to use NID as a cost function in a gradient-based optimisation
framework, we modify the construction of our image histograms to allow
the calculation of analytic derivatives. The values in each histogram bin
are defined as follows:

ps (b) =
1
|Is| ∑x∈Is

βs (b,x) , pr,s (a,b) =
1
|Is| ∑x∈Is

βr (a,x)βs (b,x) (4)

Figure 1: We localise the pose of a camera by registering a rendered image
of our prior against the live camera image. Here we show an example
from both a synthetic indoor scene and a real-world outdoor scene. (a)
Camera image; (b) a render of the prior as used for localisation; and (c) the
localised pose and viewing frustrum of the camera within the prior. Our
information-theoretic metric is robust to changes in illumination, motion
blur, and sensing modality between the live image and prior map.

In a standard histogram, the weighting functions β would take a value
of 1 in a single bin, and 0 everywhere else. We instead use the coeffi-
cients from a cubic B-spline function as the weighting function, yielding
a continuous, twice differentiable function for the value of each histogram
bin.

Using a low-fidelity 3D appearance prior of the environment, e.g.
from a dense reconstruction [5], CAD model or LIDAR scanner as shown
in Figure 1, our method is able to localise a camera under a wide range of
conditions, including image under/overexposure, outdoor lighting changes,
significant occlusions, motion blur, colour space changes, and differences
between image and map modality. We present results showing successful
online visual localisation under significant appearance change both in a
synthetic indoor environment and outdoors with real-world data from a
vehicle-mounted camera.
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