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Abstract

We conduct an in-depth exploration of different strategies for doing event detection
in videos using convolutional neural networks (CNNs) trained for image classification.
We study different ways of performing spatial and temporal pooling, feature normaliza-
tion, choice of CNN layers as well as choice of classifiers. Making judicious choices
along these dimensions led to a very significant increase in performance over more naive
approaches that have been used till now. We evaluate our approach on the challeng-
ing TRECVID MED’14 dataset with two popular CNN architectures pretrained on Im-
ageNet. On this MED’14 dataset, our methods, based entirely on image-trained CNN
features, can outperform several state-of-the-art non-CNN models. Our proposed late
fusion of CNN- and motion-based features can further increase the mean average pre-
cision (mAP) on MED’ 14 from 34.95% to 38.74%. The fusion approach yields 89.6%
classification accuracy on the challenging UCF-101 dataset.

1 Introduction

The huge volume of videos that are nowadays routinely produced by consumer cameras
and shared across the web calls for effective video classification and retrieval approaches.
One straightforward approach considers a video as a set of images and relies on techniques
designed for image classification. This standard image classification pipeline consists of
three processing steps: first, extracting multiple carefully engineered local feature descrip-
tors (e.g., SIFT [22] or SUREF [2]); second, the local feature descriptors are encoded using
the bag-of-words (BoW) [4] or Fisher vector (FV) [26] representation; and finally, classifier
is trained (e.g., support vector machines (SVMs)) on top of the encoded features. The main
limitation of directly employing the standard image classification approach to video is the
lack of exploitation of motion information. This shortcoming has been addressed by extract-
ing optical flow based descriptors (eg. [21]), descriptors from spatiotemporal interest points
(e.g., [6, 17,18, 35, 38]) or along estimated motion trajectories (e.g., [11, 13, 34, 36, 37]).
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Figure 1: Overview of the proposed video classification pipeline.

The success of convolutional neural networks (CNNs) [20] on the ImageNet [7] has
attracted considerable attentions in the computer vision research community. Since the pub-
lication of the winning model [15] of the ImageNet 2012 challenge, CNN-based approaches
have been shown to achieve state-of-the-art on many challenging image datasets. For in-
stance, the trained model in [15] has been successfully transferred to the PASCAL VOC
dataset and used as a mid-level image representation [8]. They showed promising results in
object and action classification and localization [24]. An evaluation of off-the-shelf CNN
features applied to visual classification and visual instance retrieval has been conducted on
several image datasets [28]. The main observation was that the CNN-based approaches out-
performed the approaches based on the most successful hand-designed features.

Recently, CNN architectures trained on videos have emerged, with the objective of cap-
turing and encoding motion information. The 3D CNN model proposed in [12] outperformed
baseline methods in human action recognition. The two-stream convolutional network pro-
posed in [29] combined a CNN model trained on appearance frames with a CNN model
trained on stacked optical flow features to match the performance of hand-crafted spatiotem-
poral features. The CNN and long short term memory (LSTM) model have been utilized
in [23] to obtain video-level representation.

In this paper, we propose an efficient approach to exploit off-the-shelf image-trained
CNN architectures for video classification (Figure 1). Our contributions are the following:

e We discuss each step of the proposed video classification pipeline, including the choice
of CNN layers, the video frame sampling and calibration, the spatial and temporal
pooling, the feature normalization, and the choice of classifier. All our design choices
are supported by extensive experiments on the TRECVID MED’ 14 video dataset.

e We provide thorough experimental comparisons between the CNN-based approach
and some state-of-the-art static and motion-based approaches, showing that the CNN-
based approach can outperform the latter, both in terms of accuracy and speed.

e We show that integrating motion information with a simple average fusion consider-
ably improves classification performance, achieving the state-of-the-art performance
on TRECVID MED’ 14 and UCF-101.

Our work is closely related to other research efforts towards the efficient use of CNN for
video classification. While it is now clear that CNN-based approaches outperform most
state-of-the-art handcrafted features for image classification [28], it is not yet obvious that
this holds true for video classification. Moreover, there seems to be mixed conclusions re-
garding the benefit of training a spatiotemporal vs. applying an image-trained CNN architec-
ture on videos. Indeed, while Ji ef al. [12] observed a significant gain using 3D convolutions
over the 2D CNN architectures and Simonyan et al. [29] obtained substantial gains over an
appearance based 2D CNN using optical flow features alone, Karpathy et al. [14] reported
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only a moderate improvement. Although the specificity of the considered video datasets
might play a role, the way the 2D CNN architecture is exploited for video classification is
certainly the main reason behind these contradictory observations. The additional computa-
tional cost of training on videos is also an element that should be taken into account when
comparing the two options. Prior to training a spatiotemporal CNN architecture, it thus
seems legitimate to fully exploit the potential of image-trained CNN architectures. Obtained
on a highly heterogeneous video dataset, we believe that our results can serve as a strong 2D
CNN baseline against which to compare CNN architectures specifically trained on videos.

2 Deep Convolutional Neural Networks

Convolutional neural networks [20] consist of layers of spatially-structured hidden units.
Each hidden unit typically looks at a small patch of hidden (or input) units in the previous
layer, applies convolution or pooling operations to it and then non-linearity to the result to
compute its own state. A spatial patch of units is convolved with multiple filters (learned
weights) to generate feature maps. A pooling operation takes a spatial patch and computes
typically maximum or average activation (max or average pooling) of that patch for each
input channel, creating translation invariance. At the top of the stacked layers, the spatially
organized hidden units are usually densely connected, which eventually connect to the output
units (e.g. softmax for classification). Regularizers, such as ¢, decay and dropout [32], have
been shown to be effective for preventing overfitting. The structure of deep neural nets
enables the hidden layers to learn rich distributed representations of the input images. The
densely connected layers, in particular, can be seen as learning a high-level representation of
the image accumulating information from all the spatial locations.

We initially developed our work on the CNN architecture by Krizhevsky et al. [15].
In the recent ILSVRC-2014 competition, the top performing models GoogLeNet [33] and
VGG [30] used smaller receptive fields and increased depth, showing superior performance
over [15]. We adopt the publicly available pretrained VGG model for its superior post-
competition single model performance over GoogleNet and the popular Krizhevsky’s model
in our system. The proposed video classification approach is generic with respect to the CNN
architectures, therefore, can be adapted to other CNN architectures as well.

3 Video Classification Pipeline

Figure 1 gives an overview of the proposed video classification pipeline. Each component of
the pipeline is discussed in this sections.

Choice of CNN Layer We have considered the output layer and the last two hidden
layers (fully-connected layers) as CNN-based features. The 1,000-dimensional output-layer
features, with values between [0, 1], are the posterior probability scores corresponding to
the 1,000 classes from the ImageNet dataset. Since our events of interest are different from
the 1,000 classes, the output-layer features are rather sparse (see Figure 2 left panel). The
hidden-layer features are treated as high-level image representations in our video classifica-
tion pipeline. These features are outputs of rectified linear units (RELUs). Therefore, they
are lower bounded by zero but do not have a pre-defined upper bound (see Figure 2 middle
and right panels) and thus require some normalization.

Video Frame Sampling and Calibration We uniformly sampled 50 to 120 frames de-
pending on the clip length. We have explored alternative frame sampling schemes (e.g.,
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Figure 2: Daiu;tribution of values for the outpti: layer and the last two hidden lz;;/ers of the
CNN architecture. Left: output. Middle: hidden6. Right: hidden7.
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Figure 3: Pooling. (a). The 10 overlapping square patches extracted from each frame for
spatial pyramid pooling. The red patch (centered at location 10) has sides equal to the frame
height, whereas the other patches (centered at locations 1-9) have sides equal to half of the
frame height. (b). Spatial pyramids (SP). Left: the 1 x 1 spatial partition includes the entire
frame. Middle: the 3 x 1 spatial partitions include the top, middle and bottom of the frame.
Right: the 2 x 2 spatial partitions include the upper-left, upper-right, bottom-left and bottom-
right of the frame. (c). Objectness-based pooling. Left: objectness proposals. Middle: sum
of 1000 objectness proposals. Right: foreground patch from thresholding proposal sums.

based on keyframe detection), but found that they all essentially yield the same performance
as uniform sampling. The first layer of the CNN architecture takes 224 x 224 RGB images as
inputs. We extracted multiple patches from the frames and rescale each of them to a size of
224 x 224. The number, location and original size of the patches are determined by selected
spatial pooling strategies. Each of P patches is then used as input to the CNN architecture,
providing P different outputs for each video frame.

Spatial and Temporal Pooling We evaluated two pooling schemes, average and max,
for both spatial and temporal pooling along with two spatial partition schemes. Inspired
by the spatial pyramid approach developed for bags of features [19], we spatially pooled
together the CNN features computed on patches centered in the same pre-defined sub-region
of the video frames. As illustrated in Figure 3, 10 overlapping square patches are extracted
from each frame. We have considered 8 different regions consisting of 1 x 1,3 x 1 and 2 x 2
partitions of the video frame. For instance, features from patches 1, 2, 3 will be pooled
together to yield a single feature in region 2. Such region specification considers the full
frame, the vertical structure and four corners of a frame. The pooled features from 8 spatial
regions are concatenated into one feature vector. Our spatial pyramid approach differs from
that of [9, 10, 39] in that it is applied to the output- or hidden-layer feature response of
multiple inputs rather than between the convolutional layer and fully-connected layer. The
pre-specified regions are also different. We have also considered utilizing objectness to guide
feature pooling by concatenating the CNN features extracted from the foreground region and
the full frame. As shown in Figure 3, the foreground region is resulted from thresholding the
sum of 1000 objectness proposals generated from BING [3]. Unlike R-CNN [8] that extract
CNN features from all objectness proposals for object detection and localization, We used
only one coarse foreground region to reduce the computational cost.
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Feature Normalization We compared different normalization schemes and identified
normalization most appropriate for the particular feature type. Let f € R denote the original
video-level CNN feature vector and f € R” its normalized version. We have investigated
three different normalizations: ¢; normalization f = f/||f||;; ¢, normalization f = f/|/f||,,
which is typically performed prior to training an SVM model; and root normalization f =
\/£/|If||1 introduced in [1] and shown to improve the performance of SIFT descriptors.

Choice of Classifier We applied SVM classifiers to the video-level features, includ-
ing linear SVM and non-linear SVM with Gaussian radial basis function (RBF) kernel

exp{—7||x—y||*} and exponential x> kernel exp{—yz, e +} } Principal component anal-
ysis (PCA) can be applied prior to SVM to reduce feature dimensions.

4 Modality Fusion
4.1 Fisher Vectors

An effective approach to video classification is to extract multiple low-level feature descrip-
tors; and then encode them as a fixed-length video-level Fisher vector (FV). The FV is a
generalization of the bag-of-words approach that encodes the zero-order, the first- and the
second-order statistics of the descriptors distribution. As low-level features, we consid-
ered both the standard D-SIFT descriptors [22] and the more sophisticated motion-based
improved dense trajectories (IDT) [34]. For the SIFT descriptors, we opted for multiscale (5
scales) and dense (stride of 4 pixels in both spatial dimensions) sampling, root normalization
and spatiotemporal pyramid pooling. For the IDT descriptors, we concatenated HOG [6],
HOF [5] and MBH [18] descriptors extracted along the estimated motion trajectory.

4.2 Fusion

We investigated modality fusion to fully utilize the CNN features and the strong hand-
engineered features. The weighted average fusion was applied: first, the SVM margins was
converted into posterior probability scores using Platt’s method [27]; and then the weights of
the linear combination of the considered features scores for each class was optimized using
cross-validation. We evaluated fusion features scores of different CNN layers and FVs.

5 Evaluation in Event Detection

5.1 Video Dataset and Performance Metric

We conducted extensive experiments on the TRECVID multimedia event detection (MED)’ 14
video dataset [25]. This dataset consists of: (a) a training set of 4,992 unlabeled background
videos used as the negative examples; (b) a training set of 2,991 positive and near-miss
videos including 100 positive videos and about 50 near-miss videos (treated as negative ex-
amples) for each of the 20 pre-specified events; and (c) a test set of 23,953 videos contains
positive and negative instances of the pre-specified events. Some sample frames are given
in Figure 4. Contrary to other popular video datasets, such as UCF-101 [31], the MED’14
dataset is not constrained to any class of videos. It consists of a heterogeneous set of tem-
porally untrimmed YouTube-like videos of various resolutions, quality, camera motions, and
illumination conditions. This dataset is thus one of the largest and the most challenging
dataset for video event detection. As a retrieval performance metric, we considered the one
used in the official MED’ 14 task, i.e., mean average precision (mAP) across all events. The
mAP is normalized between 0 (low classification performance) and 1 (high classification
performance). In this paper, we will report it in percentage value.
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Figure 4: Sample frames from the TRECVID MED 14 dataset.

5.2 Single Feature Performance
The single feature performance with various configurations are reported in Table 1 and 2.
The following are a few salient observations.

CNN architectures and layers The deeper CNN architecture yields consistently better
performance resulted from the depths and small receptive field in all convolutional layers.
We also observed that both hidden layers outperformed the output layer when the CNN
architecture, normalization and spatiotemporal pooling strategies are the same.

Pooling, spatial pyramids and objectness We observed a consistent gain for max pool-
ing over average pooling for both spatial and temporal pooling, irrespectively of the used
CNN layer. It is mainly resulted from the highly heterogeneous structure of the video dataset.
A lot of videos contain frames that can be considered irrelevant or at least less relevant than
others; e.g., introductory text and black frames. Hence it is beneficial to use the maximum
features response, instead of giving an equal weight to all features. As observed in Table 1,
concatenating the 8 spatial partitions (SP8) gives the best performance in all CNN layers and
SVM choices (up to 6% mAP gain over no spatial pooling, i.e., “none”), but at the expense
of an increased feature dimensionality and consequently, an increased training and testing
time. Alternatively, objectness-guided pooling provides a good trade-off between perfor-
mance and dimensionality, shown in Table 2. It outperforms the baseline approach without
spatial expansion (“none” in Table 1). The feature dimensions are only one-fourth of that of
SP8; while the performance nearly matches that of SP8 using kernel SVM.

Normalization We observed that ¢; normalization did not perform well; while the ¢,
normalization is essential to achieve good performance with hidden layers. Applying root
normalization to the output layer yields essentially the same result as applying ¢,. Yet, we
noticed a drop in performance when the root normalization was applied to the hidden layers.

Classifier One SVM model was trained for each event following the TRECVID MED’ 14
training rules; i.e., excluding the positive and near-miss examples of the other events. We
observed that kernel SVM consistently outperformed linear SVM regardless of CNN layer
or normalization. For the output layer, which essentially behaves like a histogram-based
feature, the 2 kernel yields essentially the same result as RBF kernel. For the hidden layers,
the best performance was obtained with a RBF kernel. As shown in Table 1, the result of
kernel SVM largely outperforms that of linear SVM.

PCA We analyzed dimensionality reduction of the top performing feature, CNN-B-
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Layer | Dim. | SP [Norm |SVM | mAP A | mAP B | |Layer |Dim. | Norm|SVM| mAP
output 1,000 | none | root |linear|15.90% | 19.46% | |output |2,000| root |linear|23.62%
output 8,000 | SP8 | root |linear|22.04% |25.67% | |output |2,000| root | x% [29.26%
output | 8,000 SP8 | ¢, [linear|22.01% |25.88% | |hidden6 |8,192| ¢, |linear|26.69%
output 1,000 | none | root | x% |21.54% |25.30% | |hidden6|8,192| ¢, | RBF [33.33%
output | 8,000| SP8 | root | x? [27.22%|31.24% | |hidden7 8,192 ¢, [linear|27.41%
output | 8,000| SP8 | root | RBF |27.12% | 31.73% | |hidden7|8,192| ¢, | RBF [34.51%
hidden6 | 4,096 |[none| ¢, |linear|22.11% |25.37%
hidden6 | 32,768 | SP8 | root |linear|21.13% |26.27% | Table 2: Objectness-guided pooling;
hidden6 | 32,768 | SP8 | ¢ |linear|23.21% | 28.31% | CNN B; MED’ 14 100Ex.

hidden6| 4,096|none| ¢, | RBF |28.02% |32.93%

hidden6 | 32,768 | SP8 | /> RBF |28.20% | 33.54% Dim. SVM/mAP

hidden7| 4,096 |none| /¢, |linear|21.45% |25.08% linear RBF
hidden7 32,768 | SP8 | root |linear|23.72% | 26.57% 32,768 29.70% 34.95%
hidden7 | 32,768 | SP8 fy |linear|25.01% | 29.70% 4096 29.69% 34.55%
hidden7| 4,096 [none| /> RBF |27.53% | 33.72% 2048 29.02% 34.00%
hidden7 | 32,768 | SP8 | /> RBF [29.41% | 34.95% 1024 28.34% 33.18%

Table 1: Various configurations of video classifica- Table 3: Applying PCA on the top-
tion. Spatiotemporal pooling: max pooling. A and B: perfoming feature in Table 1 prior to
8- and 19-layer CNNs from [15] and [30], resp. SP8: SVM. Feature: hidden7-layer feature
the 1 x 1+3 X 1+2x2 and 3 x 1 spatial pyramids. extracted from CNN architecture B
Dataset: TRECVID MED’ 14 100Ex. with SP8 and ¢, normalization.

hidden7-SP8, shown in Table 3. Applying PCA reduced the feature dimension from 32,768
to 4096, 2048 and 1024 prior to SVM, which resulted in slightly reduced mAPs as compared
to classification of features without PCA. However, it still outperformed or matched the per-
formance of the features without spatial pyramids (CNN-B-hidden7-none in Table 1). Thus
the spatial pyramid is effective in capturing useful information; and the feature dimension
can be reduced without loss of important information.

5.3 Fusion Performance
We evaluated fusion of CNN features and Fisher vectors (FVs). The mAPs (and features di-

mensions) obtained with D-SIFT+FV and IDT+FV using RBF SVM classifiers were 24.84%
and 28.45% (98,304 and 101,376), respectively. Table 4 reports our various fusion exper-
iments. As expected, the late fusion of the static (D-SIFT) and motion-based (IDT) FVs
brings a substantial improvement over the results obtained by the motion-based only FV.
The fusion of CNN features does not provide much gain. This can be explained by the simi-
larity of the information captured by the hidden layers and the output layer. Similarly, fusion
of the hidden layer with the static FV does not provide improvement, although the output
layer can still benefit from the late fusion with the static FV feature. However, fusion be-
tween any of the CNN-based features and the motion-based FV brings a consistent gain over
the single best performer. This indicates that appropriate integration of motion information
into the CNN architecture leads to substantial improvements.

5.4 Comparison with the State-of-the-Art

Table 5 shows the comparison of the proposed approach with strong hand-engineered ap-
proaches and other CNN-based approach on TRECVID MED’14. The proposed approach
based on CNN features significantly outperformed strong hand-engineered approaches (D-
SIFT+FV, IDT+FV and MIFS) even without integrating motion information. The CNN-
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Features mAP vs. single feats |Features mAP  vs. single feats

output, D-SIFT+FV  |31.45% +0.21%, +6.61%
D-SIFT+FV, IDT+FV |33.09% +8.25%, +4.64% |hidden6, D-SIFT+FV |31.71% -1.83%, +6.87%
hidden7, D-SIFT+FV |33.21% -1.74%, +8.37%
output, hidden6 35.04% +3.80%, +1.50% |output, IDT+FV 37.97% +6.73%, +9.52%
output, hidden7 34.92% +3.68%, -0.03% |hidden6, IDT+FV 38.30% +4.76%, +9.85%
hidden6, hidden7 34.85% +1.31%, -0.10% |hidden7, IDT+FV 38.74% +3.79%, +10.29%

Table 4: Fusion. Used the best performing CNN features with kernel SVMs in Table 1.

Method CNN | mAP

D-SIFT [22]+FV [26] no | 24.84%
IDT [34]+FV [26] no | 28.45%
D-SIFT+FV, IDT+FV (fusion) no | 33.09%
MIFS [16] no | 29.0%
CNN-LCDvyap with multi-layer fusion [39] | yes | 36.8 %
proposed: CNN-hidden6 yes | 33.54%
proposed: CNN-hidden7 yes | 34.95%
proposed: CNN-hidden7, IDT+FV yes | 38.74%

Table 5: Comparison with other approaches on TRECVID MED’ 14 100Ex

based features have a lower dimensionality than the Fisher vectors. In particular, the dimen-
sion of the output layer is an order of magnitude smaller. The CNN architecture has been
trained on high resolution images, whereas we applied it on low-resolution video frames
which suffer from compression artifacts and motion blur. This further confirms that the
CNN features are very robust, despite the domain mismatch. The proposed approach also
outperforms the CNN-based approach by Xu ez al. [39]. Developed independently, they used
the same CNN architecture as ours, but different CNN layers, pooling, feature encoding and
fusion strategies. The proposed approach outperforms all these competitive approaches and
yields the new state-of-the-art, thanks to the carefully designed system based on CNNs and
the fusion with motion-based features.

6 Evaluation in Action Recognition

6.1 Single Feature Performance

We evaluated our approach on a well-established action recognition dataset UCF-101 [31].
We followed the three splits in the experiments and report overall accuracy in each split and
the mean accuracy across three splits. The configuration was the same as the one used in
TRECVID MED’ 14 experiments, except that only linear SVM was used for fare comparison
with other approaches on this dataset. The results are given in Table 6. The CNN architec-
tures from [15] and [30] are referred as A and B. It shows that using hidden layer features
yields better recognition accuracy compared to using softmax activations at the output layer.
The performance also improves by up to 8% using deeper CNN architecture.

6.2 Fusion Performance

We extracted IDT+FV features on this dataset and obtained mean accuracy of 86.5% across
three splits. Unlike the event detection task in TRECVID MED’ 14 dataset, the action recog-
nition in UCF-101 is temporally trimmed and more centered on motion. Thus, the motion-
based IDT+FV approach outperformed the image-based CNN-approach. However, as shown
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CNN |Features Single feature accuracy Fusion accuracy

archi. split1 split2 split3 | mean | split1 split2 split3 | mean
A |output [69.02% 68.21% 68.45% |68.56% |85.57% 87.01% 87.18% |86.59%
A |hidden6 [70.76% 71.21% 72.05% |71.34% (86.39% 87.36% 87.61% |87.12%
A |hidden7 [72.35% 71.64% 73.19% |72.39% |86.15% 87.98% 87.74% |87.29%
B |output |75.65% 75.74% 76.00% |75.80% |87.95% 88.43% 89.37% |88.58%
B |hidden6 |79.88% 79.14% 79.00% |79.34% |88.63% 90.01% 90.21% |89.62%
B |hidden7 [79.01% 79.30% 78.73% |79.01% |88.50% 89.29% 90.10% |89.30%

Table 6: Performance of the proposed approach on UCF-101. Configurations are the same
as in experiments on MED’ 14. Features are extracted with SP8, classified with linear SVMs.

Method Mean accuracy over three splits
Spatial stream ConvNet [29] 73.0%
Temporal stream ConvNet [29] 83.7%
Two-stream ConvNet fusion by avg [29] 86.9%
Two-stream ConvNet fusion by SVM [29] 88.0%
Slow-fusion spatiotemporal ConvNet [14] 65.4%
Single-frame model [23] 73.3%
LSTM (image + optical flow) [23] 88.6%
MIFS [16] 89.1%
proposed: CNN-hidden6 only 79.34%
proposed: CNN-hidden6, IDT+FV (avg. fusion) 89.62%
proposed: CNN-hidden7, IDT+FV (avg. fusion) 89.30%

Table 7: Comparison with other approaches on UCF-101

in Table 6, a simple weighted average fusion of CNN-hidden6 and IDT+FT features boosts
the performance to the best accuracy of 89.62%.

6.3 Comparison with the State-of-the-Art

Table 7 shows comparisons with other approaches. Note that the proposed image-based
CNN-approach yields superior performance (6.3%, 6.0% and 13.9% higher) than the spatial
stream ConvNet in [29], the single-frame model in [23] and the slow-fusion spatiotemporal
ConvNet in [14] even though our model is not fine-tuned on specific dataset. The fusion
performance of CNN-hidden6 (or CNN-hidden7) and IDT+FV features also outperforms the
two stream CNN approach [29] and long short term memory (LSTM) approach that utilizing
both image and optical flow [23]. The proposed fusion approach also outperforms the MIFS
approach [16], which has shown to be competitive on the UCF-101 dataset. Note that both
our image-trained and fusion approaches outperform the MIFS approach by a large margin
on the temporally untrimmed and unconstraint TRECVID-MED 14 dataset.

7 Computational Cost

We have benchmarked the extraction time of the Fisher vectors and CNN features on a CPU
machine. Extracting D-SIFT (resp. IDT) Fisher vector takes about 0.4 (resp. 5) times the
video playback time, while the extraction of the CNN features requires 0.4 times the video
playback time. The CNN features can thus be extracted in real time. On the classifier
training side, it requires about 150s to train a kernel SVM event detector using the Fisher
vectors, while it takes around 90s with the CNN features using the same training pipeline.


Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Karpathy, Toderici, Shetty, Leung, Sukthankar, and Fei-Fei} 2014

Citation
Citation
{Ng, Hausknecht, Vijayanarasimhan, Vinyals, Monga, and Toderici} 2015

Citation
Citation
{Ng, Hausknecht, Vijayanarasimhan, Vinyals, Monga, and Toderici} 2015

Citation
Citation
{Lan, Lin, Li, Hauptmann, and Raj} 2015

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Ng, Hausknecht, Vijayanarasimhan, Vinyals, Monga, and Toderici} 2015

Citation
Citation
{Karpathy, Toderici, Shetty, Leung, Sukthankar, and Fei-Fei} 2014

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Ng, Hausknecht, Vijayanarasimhan, Vinyals, Monga, and Toderici} 2015

Citation
Citation
{Lan, Lin, Li, Hauptmann, and Raj} 2015


10 ZHA ET AL.: EXPLOITING IMAGE-TRAINED CNN ARCHITECTURES

On the testing side, it requires around 30s to apply a Fisher vector trained event model on the
23,953 TRECVID MED’ 14 videos, while it takes about 15s to apply a CNN trained event
model on the same set of videos.

8 Conclusion

In this paper we proposed a step-by-step procedure to fully exploit the potential of image-
trained CNN architectures for video classification. While every step of our procedure has an
impact on the final classification performance, we showed that CNN architecture, the choice
of CNN layer, the spatiotemporal pooling, the normalization, and the choice of classifier are
the most sensitive factors. Using the proposed procedure, we showed that an image-trained
CNN architecture can outperform competitive motion- and spatiotemporal- based non-CNN
approaches on the challenging TRECVID MED’14 video dataset. The result shows that
improvements on the image-trained CNN architecture are also beneficial to video classifica-
tion, despite the domain mismatch. Moreover, we demonstrated that adding some motion-
information via late fusion brings substantial gains, outperforming other vision-based ap-
proaches on this MED’ 14 dataset. Finally, the proposed approach is compared with other
approaches on the action recognition dataset UCF-101. The image-based approach out-
performs other image-trained CNN approaches and the late fusion of image-trained CNN
features and motion-based IDT-FV features is comparable with the state-of-the-art.

In this work we used an image-trained CNN as a black-box feature extractor. Therefore,
we expect any improvements in the CNN to directly lead to improvements in video classifi-
cation as well. The CNN was trained on the ImageNet dataset which mostly contains high
resolution photographic images whereas the video dataset is fairly heterogeneous in terms of
quality, resolution, compression artifacts and camera motion. Due to this domain mismatch,
we believe that additional gains can be achieved by fine-tuning the CNN for the dataset.
Even more improvements can possibly be made by learning motion information through a
spatiotemporal deep neural network architecture.
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