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A large number of local signatures have been created to represent local
characteristics of geometric 3D shapes for the purpose of many computer
vision, geometry processing and shape analysis tasks. A local signature
is a compact representation that characterizes a small region of a shape.
They usually capture information about the neighbourhood of a vertex
and so they can be directly applied to some important tasks like point cor-
respondence and shape segmentation. For this purpose, it is desirable to
compute signatures that are invariant under rigid, non-rigid and isometric
deformations, the typical deformations that 3D models undergo. How-
ever, local descriptors cannot be immediately applied to the problem of
shape retrieval, because this task is not addressed by comparing local sig-
natures but by comparing global descriptors (signatures that represent the
shape as a whole). Creating a global descriptor is not a simple task since
shapes can have arbitrary number of vertices, edges and faces. To create
a generic representation of a shape all important characteristics should be
preserved during the encoding process. Even so, the global representation
must compress local characteristics using the same basis for all shapes in
order to facilitate comparisons.

In this paper, we propose an efficient and discriminative encoding
framework to address the problem of creating global signatures for 3D
models from local descriptors based on the spectrum of the shape, for the
purpose of shape retrieval and classification. In this way, we propose the
use of Fisher Vector (FV) to describe the entire representation of a shape.
Differently from [1, 2], our approach uses a Gaussian Mixture Model
(GMM) as a dictionary of probabilistic visual words, and encodes the
global signature using three orders statistics (0-th, 1-st, 2-nd) rather than
using only the first order. Further, while the classical Bag-of-Features
(BoF) generates a K-dimensional histogram, where K is the vocabulary
size, Fisher Vector encoding generates a high-dimensional vector with
2KD dimensions, where D is the size of each local descriptor, being more
discriminative but still simple to compare, as all shapes are encoded in
the same basis. We also propose some improvements to the Wave Kernel
Signature (WKS), since it overtakes the Heat Kernel Signature (HKS) and
Scale Invariant Heat Kernel Signature (SI-HKS) in retrieval performance.
A better scaling is proposed for the eigenvalues of the Laplace-Beltrami
operator which captures more information about the shape and we also
propose the use of principal curvatures to increase the efficiency of the
encoding method.

The Fisher Vector encoding characterizes a large set of vectors by
their three-order deviation from a vocabulary, creating a high-dimensional
gradient vector representation. The gradient of the log-likelihood, also
called Fisher score, describes the contribution of each parameter to the
generation process. To compute the FV encoding, we write the local
shape descriptors wrt. the probabilistic model (Gaussian Mixture Model).
To properly compare shape signatures we have also applied L2 Normal-
ization and Power Normalization to the Fisher Vector, also known as the
Improved FV [3].

When it comes to improving the WKS (1), we have analysed the in-
fluence of the logarithmic scaling to the computation of the signature and
we concluded that it loses high frequency information about the spectrum
of the shape (even important high frequencies that do not originate from
noise are blurred). Then, we analysed the distributions of the differences
between eigenvalues of 24 articulated woman shapes (Figure 1) and we
propose to use the cubic root scaling (2) rather than the classical logarith-
mic scale (1) since it fits much better a normal distribution, which is used
to handle the differences between same-class shapes.
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Figure 1: Histograms of the differences between the eigenvalues Λ of the
Laplace-Beltrami operator of 24 articulated woman shapes. (left) His-
togram of the differences not scaled. (right) Histogram of the differences
scaled by the cubic root. On each graph, the red line is a reference normal
distribution fitted to the respective histogram.

We also analyze the WKS when combined with encoding methods.
These methods are based on the differences between descriptor histograms
and a probabilistic model. The more discriminative these histograms are
the more the encoding process will be able to distinguish between shapes
of different classes. We have noticed that when shapes undergo pose
changes, the maximum principal curvature of the vertices remains sta-
ble. This is a local feature of the surface, which is isometry invariant and
stable at most points under object articulation but not well coded in the
WKS. Therefore, as another improvement to the shape retrieval task, we
propose the use of principal curvatures to increase the separation of fea-
tures leading to a more discriminative histogram. Practically, we shift the
WKS individually by the maximum principal curvature c for each vertex
x as stated in Equation (3). We smooth the maximum principal curvature
by taking the mean of the respective neighbour vertices to diminish the
influence of noise. In (3), α is a weight that normalizes c accordingly to
the signature values. We use α = 0.015 in all our experiments.
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We compare our method against the competitors of the non-rigid
tracks of SHREC’11 and SHREC’15. By analyzing our retrieval accu-
racy in the SHREC’11 track it is clear that our approach improves spectral
descriptors to tackle shape retrieval problems since it achieves excellent
retrieval measures (DCG very close to 1) and comparable results with
best retrieval methods (very similar e-Measure to the top tier methods).
Furthermore, our method presents a much better performance when com-
pared to other spectral descriptors, showing its potential.

Our conclusion is that although our method does not beat all other
groups in the SHREC’11 and SHREC’15 benchmarks it proves that spec-
tral methods are a good choice to retrieve shapes when combined with
informative encoding methods, since our method is close to the best tech-
niques in performance and achieves excellent results in most benchmark
classes. We observed that the our worst retrieval performances happen
when shapes undergo huge topology changes. Specially in these cases,
spectral signatures still need to be improved. In future works, we plan to
create a spectral signature that is less variant to major topology changes.
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