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Abstract

This paper proposes a novel method of performing inverse compositional image
alignment which elegantly deals with missing data and re-weighting, and does not re-
quire the Jacobians and Hessian to be re-computed at every iteration. We show how
missing data and re-weighting can be handled through preconditioning. We propose a
few preconditioning techniques and analyse how each technique models the effects of
missing data and re-weighting for inverse composition. We show through extensive ex-
periments on different applications that our method improves the convergence rate of the
conventional re-weighted inverse compositional method while remaining robust to out-
liers. We also show that the the update parameters are usually underestimated and how
this can be used to further speed up convergence of image alignment methods.

1 Introduction
Image alignment is the problem of deforming an image template to align the template with
a reference image. It has wide ranging applications in computer vision such as optical flow
[16], tracking [8], and image mosaic-ing [15]. Image alignment is often performed using
variants of the Lucas-Kanade algorithm [16]. Among these variants, the inverse composi-
tional (IC) method [2] and the efficient second-order minimization (ESM) method [5] are
the most efficient variants for image alignment. The benefit of IC is that the Jacobian matrix
and its Hessian can be pre-computed, whereas ESM provides a second-order approximation
of the Hessian and thus converges in fewer number of iterations.

The choice of using IC or ESM depends on the cost of re-computing the Jacobian at every
iteration. While ESM is computationally more efficient in image alignment with homogra-
phies [17], IC is still computationally more efficient in image alignment problems which use
RGB-D data [14] where it is expensive to re-compute the Jacobian. In this paper, we look at
methods to accelerate the convergence of IC and ESM algorithms while remaining robust to
outliers. Our contributions are as follows:

• The conventional re-weighted IC algorithm [4] requires the Jacobian and its Hessian to
be re-computed at every iteration. We show that re-weighted IC can still be performed
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without needing to re-compute the Jacobian and its Hessian by using a preconditioning
strategy. We provide an analysis for a number of approaches (see Section 2.2).

• Through extensive experiments on various image alignment problems with different
warping models such as affine warps, homographies, and SE(3) warps using RGB-D
data, that our proposed methods are equally as robust and provide faster convergence
than the original re-weighted IC method (see Sections 3.1 and 3.2).

• Further, we show how consideration of the effects of image noise and/or spectral alias-
ing over the scale of the deformation can be used to further speed up all of these meth-
ods (see Section 3.3).

1.1 Related Work

Image alignment approaches can be divided into energy-based methods [2, 10, 16, 19] and
learning-based methods [11, 13]. Energy-based methods perform image alignment by min-
imizing an energy function based on the photometric error between pixels in the template
and reference image. In contrast, learning-based methods have an offline learning stage [13]
which randomly warp samples of the initial template to learn how to predict parameter up-
dates during run-time. The offline learning phase is usually time consuming. Holzer et al.
[11] proposed a few strategies to reduce the learning time using dimensionality reduction.

Energy-based image alignment methods are usually variants of the Lucas-Kanade (LK)
algorithm [16], with [3] providing an excellent survey. The LK algorithm can be formulated
as additive or compositional, and these can be further formulated as forward or inverse.
This results in four variants: the forward additive (FA) method, forward compositional (FC)
method [19], inverse additive (IA) method [10], and the inverse compositional (IC) method
[2]. The FA and FC variants can be extended through the efficient second-order minimiza-
tion (ESM) method [5, 17] which provides a second-order approximation of the Hessian.
The problem of re-weighting in the LK algorithm is well studied in literature [1, 4, 7, 10].
Baker et al. [4] studied the use of weighting functions in the different variants of the LK
algorithm, and showed that re-weighting via M-estimators in the IC method necessitates the
re-computation of the Jacobians and Hessian at every iteration, making it as expensive as
the canonical LK algorithm. The authors also studied the use of weighted L2 norms in the
LK algorithm, and proposed to weigh every pixel by the magnitude of its image gradient.
Dellaert and Collins [7] proposed the use of binary weights based on a threshold on the gra-
dient magnitude. Hager and Belhumeur [10] assume that the unweighted Hessian is a good
approximate to the weighted Hessian, so only the Jacobians need to be re-computed at every
iteration. Ashraf et al. [1] proposed to formulate the LK algorithm in the Fourier domain,
and showed how it can be done through a pre-computed weighting matrix and how it can be
extended to an IC formulation.

2 Inverse Composition with Preconditioning
We first provide a brief summary of the Lucas-Kanade (LK) algorithm [16], its inverse com-
positional (IC) variant, and the efficient second-order minimization (ESM) technique [5].
For full derivations, we refer the reader to [3] for the LK method and [5] for ESM. The LK
algorithm minimizes the cost function CLK, which is the sum of squared errors over all pixels
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x between a template image T and a reference image I that is warped onto the template:

CLK = ∑
x
[I(M(x;p))−T (x)]2, (1)

where p is the parameter vector and x is the pixel location in the template. M(x;p)) is a
warping function which maps the pixel x in the template T to a sub-pixel location I(M(x;p))
in the reference image I. The cost in Equation (1) is minimized iteratively using a first-order
approximation of the cost function. This requires computing the Jacobian Jx = ∇I ∂M

∂p for

every pixel. The partial derivative ∂M
∂p has to be evaluated at M(x;p), and hence Jx has to be

re-computed at every iteration. We denote this Jacobian as J(δ ). The IC algorithm switches
the role between the template T and the reference image I, and minimizes the cost function
CIC, which is the sum of squared errors

CIC = ∑
x
[T (M(x;∆p))− I(M(x;p))]2 (2)

with respect to ∆p. As Jx is now computed using the template image T which does not
depend on p, it can be pre-computed as J(0). ESM linearizes the cost function in Equation
(1) using a second-order Taylor expansion. The only difference with the LK algorithm is
the way in which the Jacobian Jx is computed for each pixel. The Jacobian for ESM is an
average of the Jacobian J(δ ) from the canonical LK algorithm which has to be computed at
every iteration, and the Jacobian J(0) from the IC method which can be pre-computed:

JxESM = 0.5[J(δ )+ J(0)]. (3)

2.1 Minimizing the Cost Function
The cost functions in Section 2 are minimized by updating the parameter vector p by ∆p
iteratively. p is related to the error vector e as

J∆p = e, (4)

where J is an m×n Jacobian matrix (m≥ n). At each iteration, we form the normal equations

H∆p = JT e, (5)

where H = JT J is the Hessian. ∆p is then computed as ∆p = H−1JT e. If re-weighting is
necessary due to outliers and/or unused pre-computed Jacobians due to missing data (e.g.
part of the template image may not be aligned with the reference image), Equation (5) can
be re-written as

(JTWJ)∆p = JTWe, (6)

where W is usually a diagonal matrix. The value wx in each row is the weight of the pixel
location x, and it can be either a robust function ρ(;σ) or a spatially aware re-weighting
function which weighs each measurement based on the magnitude of its image gradient [4].

2.2 Re-weighting through QR Factorization
As H and its weighted version JTWJ is symmetric and positive-definite, its pseudo-inverse
H−1 is usually computed through a Cholesky factorization [9]. We propose using a QR
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Figure 1: Left: Missing data and re-weighting causes the factor Q to turn into a matrix Q̂ that
is no longer orthogonal. Right: The proposed preconditioners P. The product P−1(Q̂T Q̂)
should be as close to I as possible. Here, a darker shade represents a value closer to 1.0.

factorization [9] on the Jacobian matrix J instead. Equation (4) can now be written as

Q
[

R
0

]
∆p = e, (7)

where Q is an m×m orthogonal matrix where QT = Q−1, and R is an m×n upper triangular
matrix. The factor Q has a condition number of of 1.0 and handles the dimensionality of
the problem as every row in Q corresponds to the Jacobian of the pixel location x. The
conditioning in the Jacobian J, on the other hand, is stored in the factor R. To compute ∆p,
both sides of (7) are multiplied by QT . As QT Q = I, ∆p can now be computed as

∆p = R−1QT e. (8)

If re-weighting is performed, Equation (7) can be re-written as

Q̂
[

R
0

]
∆p = ê (9)

where Q̂ =
√

WxQ and ê =
√

Wxe. Q̂ is not an orthogonal matrix and every column vector in
Q̂ has a magnitude that is less than 1.0 (see Figure 1). Hence, the product Q̂T Q̂ is not equal
to the identity matrix I, i.e. Q̂T Q̂ 6= I. ∆p in Equation (8) now has to be solved by taking
(Q̂T Q̂)−1 into account:

∆p = R−1(Q̂T Q̂)−1Q̂T ê. (10)

If we substitute Q̂ =
√

WxQ and ê =
√

Wxe into Equation (10), the re-weighting problem can
be re-formulated using the original factors Q and R:

∆p = R−1(QTWQ)−1QWe. (11)

2.3 Re-weighting as a Preconditioning Problem
In Equation (11), the factors Q and R can be pre-computed. At every iteration, the weight
matrix W , the error vector e, and the product (Q̂T Q̂)−1 has to be computed. We propose
a preconditioning approach [6] to approximate (Q̂T Q̂)−1, where the goal is to construct a
matrix P so that the product P−1(Q̂T Q̂) has a smaller condition number compared to Q̂T Q̂.
Ideally, the matrix P is P = Q̂T Q̂ as P−1(Q̂T Q̂) has a condition number of 1.0. However, this
requires solving P−1 which is computationally as expensive as solving the original problem.
At the other extreme, P = I is computationally cheapest, but does nothing to reduce the
condition number of the problem. Here, we propose a few preconditioning matrices P (see
Figure 1) that lie between the two extremes P = Q̂T Q̂ and P = I:
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1. The scaled identity matrix
P = kI, (12)

where k is a scalar value, k ≥ 1.0. The value k can be chosen as the inverse of the
average weight, i.e. k = N

∑x wx
, where N is the number of measurements.

2. The diagonal/Jacobi preconditioner

P = diag(Q̂T Q̂) = Λ, (13)

which is computed by accumulating the sum of weighted, squared elements in the
corresponding column j of the pre-computed factor Q. More concretely, Λ j =∑i wiq2

i, j
where i represents the i-th row.

3. Finally, the Jacobi preconditioner in (13) can be extended to include off-diagonal ele-
ments as well, resulting in

P = diag(
√

Λ)(I + ε)diag(
√

Λ), (14)

where ε is a symmetric matrix, and εi j = 0 ∀ i= j. The off-diagonal elements εi j ∀ i 6= j
can be computed as

εi j =
∑r wrqriqr j√

Λi
√

Λ j
. (15)

For the preconditioners in Equation (12) and (13), the inverse P−1 is simply an inversion
of every diagonal element in P. For Equation (14), assuming that εi j ≈ 0, (I + ε)−1 can be
computed with a first-order Neumann series [18] approximation:

(I + ε)−1 = ∑
∞
n (−1)nεn = I− ε + ε2− ε3 · · ·

≈ I− ε
. (16)

The inverse of (14) can then be computed as

P−1 = (
√

Λ)−1(I− ε)(
√

Λ)−1. (17)

The cost of our proposed methods is compared with the conventional re-weighted IC
algorithm in Table 1, where n is the number of warp parameters and N is the number of
pixels. For the re-weighting cost of our method, the first term is the cost to compute P
and the second term is the cost to compute P−1. For the conventional re-weighted IC, the
first term is the cost to compute the Hessian H and the second term is the cost to compute
the H−1. Using Householder transformations, the number of operations required for QR
factorization is 2n2N−2n3/3. As n�N, the pre-computation cost is approximately O(n2N)
and is similar to the conventional re-weighted IC method. The per-iteration cost of the scaled
identity and diagonal preconditioners are the cheapest, while the off-diagonal preconditioner
is asymptotically as expensive as the original re-weighted IC algorithm.

3 Results
We evaluate the performance of our proposed methods on image alignment with affine
warps, homographies, and SE(3) warps. All experiments were conducted on a machine
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Cost to: Eq. (12) Eq. (13) Eq. (14) Re-weighted IC
Pre-compute O(n2N) O(n2N) O(n2N) O(n2N)

Re-weight O(N)+O(n) O(nN)+O(n) O(n2N)+O(n2) O(n2N)+O(n3)

Table 1: Cost of the proposed preconditioners compared with the canonical re-weighted IC.
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Figure 2: Comparison with the canonical IC and the re-weighted IC algorithm. Top: Affine
warps. Middle: Homography. Bottom: SE(3) warps. The first 3 columns from the left show
convergence behaviour. The rightmost column shows the preconditioning RMSE.

with a 2.2GHz processor. A C++ implementation of our approach will be made available
at https://bitbucket.org/whvlui/fast_ic/. We first compare our proposed
methods with the canonical IC algorithm and its re-weighted variant in Section 3.1 using a
robust M-estimator. Next, we evaluate the performance of our proposed methods using a spa-
tially aware re-weighting function and compare our best performing methods with ESM in
Section 3.2. Finally, we consider the effects of noise and/or spectral aliasing on convergence
in Section 3.3.

3.1 Comparison with Inverse Composition
In this experiment, we use the Huber M-Estimator [12] for all methods. Noise and/or outliers
are added to the images and we measure:

• The convergence behaviour of our proposed methods compared with the original IC al-
gorithm and its re-weighted variant for affine warps, homographies, and SE(3) warps.
For affine warps and homographies, we measure the root mean squared error (RMSE)
between the true and predicted pixel locations in the reference image. For SE(3) warps,
we measure the RMSE between the true and predicted SE(3) pose. Here, we plot the
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freiburg1_xyz freiburg2_desk freiburg3_sitting_xyz

Figure 3: Comparison with canonical IC and re-weighted IC algorithm using real image
sequences from TUM RGB-D dataset [20].

convergence behaviour against the average time taken for each iteration.

• How accurately each preconditioner approximates Q̂T Q̂. We measure the RMSE be-
tween the product P−1(Q̂T Q̂) and the identity matrix I:

Preconditioning RMSE =

√
1

n ·m

n

∑
i

m

∑
j
((P−1Q̂T Q̂)i j− Ii j). (18)

Our experimental setup is similar to [3]. For affine warps and homographies, the tem-
plate image T is 100×100 pixels, and is manually selected in an image (see Figure 7). For
SE(3) warps, the template image T is an RGB-D image from the TUM RGB-D dataset [20]
where every pixel has a corresponding depth value. To generate random affine warps, Gaus-
sian noise is added with a certain variance to 3 canonical points on the template, resulting
in 3 perturbed points that are used to define the warp parameters. Random homographies
are generated similarly, but using 4 canonical points. For SE(3) warps, the translations are
sampled from a uniform distribution of ±0.01m whereas the rotations are sampled from a
uniform distribution of ±1◦.

For the noise experiment, Gaussian noise of up to 8σ intensity levels is added to both the
template and reference image. For the outlier experiment, the outliers are created by filling a
square area in the reference image with intensity values from natural images. 20 iterations is
performed for each method for affine warps and homographies. For SE(3) warps, we use 3
pyramid levels for each algorithm, where each level is a factor of 2 smaller than the previous
level. 20 iterations is performed for the 2nd level, followed by 10 in the 1st level, and 5
in the 0th level. Each algorithm is allowed to break from the iterations early if the average
residual photometric error no longer decreases for a few iterations. Additionally, only pixels
with gradient values larger than a certain threshold are used.

The average result obtained from 500 warps is shown in Figure 2. The rightmost column
in Figure 2 shows that the off-diagonal preconditioner is, unsurprisingly, the most accurate,
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Figure 4: Comparing spatially aware re-weighting (Equation 19) and Huber re-weighting
with 10% outliers. Top: Affine warps. Middle: Homography. Bottom: SE(3) warps.

followed by the diagonal method, and then the scaled identity method. In terms of conver-
gence, the canonical IC algorithm is not robust to outliers. The proposed preconditioners
are as robust as the conventional re-weighted IC algorithm in all cases. On average, both
the scaled identity and the diagonal preconditioners converge in less time compared to the
re-weighted IC algorithm. As expected, the off-diagonal method is almost as expensive as
the conventional re-weighted IC (see Section 2.2).

We have also evaluated our proposed methods using three real image sequences from the
TUM RGB-D dataset [20]. Here, we measure the average convergence using image pairs
formed from consecutive images in each sequence, similar to how visual odometry is per-
formed. The result is shown in Figure 3. The canonical IC algorithm along with the diagonal
preconditioner display the fastest convergence, followed by the off-diagonal preconditioner
and the scaled identity preconditioner, and finally the conventional re-weighted IC. In terms
of robustness, our proposed methods converge to the same RMSE values as the conventional
re-weighted IC algorithm, whereas the canonical IC algorithm converges to RMSE values
that are slightly higher in the freiburg1_ xyz and the freiburg3_ sitting_ xyz dataset.

3.2 Spatially Aware Re-weighting vs M-Estimators
We repeat the 10% outlier variant of the experiment in Section 3.1 with the following spa-
tially aware re-weighting function:

wx =
|∇T (x)|2

|∇T (x)|2 + e2
x
. (19)

The intuition behind this weighting function is that pixels with a high gradient are less likely
to be affected by noise compared to pixels with a low gradient. The results are shown in
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Figure 4. For affine warps and homographies, spatially aware re-weighting provides similar
results except for the scaled identity preconditioner, which shows a huge improvement com-
pared to the Huber re-weighting function. This is because the scaled identity preconditioner
merely uses the average weight from all the measurements. For SE(3) warps, the Huber
re-weighting function provides slightly better results in all cases.

We repeat the same experiment and compare the best performing methods with ESM,
which is the scaled identity preconditioner with spatially aware re-weighting for affine warps
and homographies, and the diagonal preconditioner with Huber re-weighting for SE(3) warps.
The result (see Figure 5) shows that the preconditioned IC method converges as quickly as
ESM for affine warps and homographies and converges faster than ESM for SE(3) warps.

Ours

ESM

Re-weighted IC

Affine Homography SE(3)

Figure 5: Comparison between the best performing preconditioned IC algorithms with ESM.

3.3 Step Size vs Convergence

Ours ESM Re-weighted IC

Figure 6: Effects of amplifying step size γ on convergence behaviour. Left: IC with scaled
identity preconditioning. Center: ESM. Right: Re-weighted IC.

Here, we look at the effects of noise and/or spectral aliasing on the convergence of image
alignment algorithms. If we assume Gaussian intensity noise δ ∼ N(0,σδ ) in the images
and that the corresponding noise Jacobian has a Gaussian distribution ε ∼ N(0,σε), then we
can re-write Equation (5) as (J+ ε)∆p = e+δ , which can then be expanded as

(JT J+ ε
T J+ JT

ε + ε
T

ε)∆p = JT e+ ε
T e+ JT

δ + ε
T

δ . (20)

In Equation (20), all the terms involving ε and δ are ≈ 0, except for εT ε because these
terms involve a large number of independent entries in ε and/or δ . The term εT δ is also ≈ 0
because ε and δ are independent. This gives:

(JT J+ ε
T

ε) = JT e. (21)

Hence, εT ε acts as a regularisation term in the least squares optimization, causing damping
and thus causes the system to underestimate the update parameters. It is then advantageous
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Figure 7: Qualitative results showing the how the residual photometric error changes with
the number of iterations.

to amplify the update step by a parameter γ . As discussed in [4], choosing the best step
size can be an involved process. We solve this by slowly increasing the step size until the
algorithms start showing signs of divergence. The value of γ is then heuristically chosen
to be γ = γmax/2. Figure 6 shows the convergence behaviour for homographies with a few
different step sizes. From our experiments, a good value for γ is between 1.5 to 2.0.

4 Conclusion

We have presented a new approach to perform inverse compositional image alignment with
missing data and re-weighting which does not need the Jacobian and its Hessian to be re-
computed at every iteration. This is possible by solving the problem using QR factorization
instead of a Cholesky factorization, followed by a preconditioning strategy. We have showed
through experiments with different warp models such as affine warps, homographies, and
SE(3) warps that our method is equally as robust and faster than existing image alignment
techniques. Among the proposed preconditioning strategies, the diagonal preconditioner
provides the best trade-off between computational efficiency and robustness. Finally, we
showed that image alignment algorithms typically underestimate the step size of the pa-
rameter update due to damping caused by noise and/or spectral aliasing. We showed that
a moderate amplification of the step size further improves the convergence of image align-
ment algorithms. Some qualitative results of our approach is shown in Figure 7 and the
supplementary document.
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