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Abstract

The task of image classification is one of the key problems in computer vision, and
has inspired a variety of image representations. In this paper, we propose a method to
learn discriminative combinations of mid-level visual elements that capture their spatial
configurations and co-occurrence relationships. We term such combinations as visual
n-grams. Our method is capable of learning combinations with different number of ele-
ments. Experiments conducted on multiple datasets demonstrate the effectiveness of our
approach where we achieve high image classification accuracy. Further, on fusing our
features with global image features, we outperform the state-of-the-art results.

1 Introduction

Extraction of robust and informative representation is of crucial importance to image classi-
fication. Over the years, researchers have proposed a wide variety of image features. Bag-
of-visual-words representations have been used widely and demonstrated successful classifi-
cation performance with different kinds of low-level features [7, 19, 21]. They successfully
capture low-level image information such as local edges and corners, but fail to provide
much semantic information. Image-level features are able to capture substantial semantic
information and have been shown to be effective for applications that involve finding near-
duplicates from a tagged image dataset [10, 28]. These high level features are often learnt
in a data-driven fashion thus necessitating the availability of huge datasets annotated with
semantic tags.

Mid-level features [3, 17, 26, 27] can help bridge the semantic gap between pixel and
image level representations. They are more informative, better understandable by humans
and potentially more discriminative, as compared to low-level features. Also, they can be
learnt in a bottom-up fashion without requiring a large annotated dataset. Many existing
methods to learn mid-level visual elements consider each mid-level feature individually, and
do not take their mutual relationships into account. We follow the intuitive idea that learning
discriminative combinations of visual elements can help us deal with ambiguities better. As
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Figure 1: Example of a visual bigram. Similar visual elements may occur on different objects (highlighted in
blue). Examining these elements together with neighboring patches (highlighted in yellow and red) can be useful
in distinguishing the objects. Source images from [22].

an example, consider Figure | where a visually similar patch (in blue) can be found on
both bike and motorbike objects. However, examining this patch along with those in the
neighborhood provides better evidence towards distinguishing the two objects. Motivated by
this, we propose the concept of visual n-grams to effectively represent combinations of visual
elements along with their relative spatial configuration and co-occurrence relationships.

In this paper, we present a novel and effective method to automatically learn discrim-
inative visual n-grams. Towards this end, we start with randomly extracted patches from
the given set of training images, and employ categorical decision trees to learn a series
of discriminative combinations. To successfully discover multiple discriminative n-grams,
we incorporate a boosting framework and learn a series of categorical decision trees. We
evaluate our method on the publicly available Graz-01 dataset [22], UIUC 8-sports events
dataset [15], INRIA horse images dataset [1] and Land-Use dataset [31]. It is shown that
our method attains high classification accuracy on these datasets and compares favorably
with the existing methods. When fused with global image representation of Improved Fisher
Vectors (IFV) [24], we outperform the state-of-the-art methods on these datasets.

2 Related Work

One form of mid-level representation can be obtained by pooling low-level features with
the aim to retain more discriminative information than the standard bag-of-words represen-
tation does [3, 11, 14]. These approaches are able to perform better than the bag-of-words
representation, but do not capture much of human understandable semantic concepts.

Yuan et al. [32] generate visual phrases as combinations of visual words based on their
collocations patterns. Their representations, however, only includes co-occurrence statis-
tics, while spatial layout information for co-occurring codewords is not considered. Chum
and Matas [6] discover co-occurrences in high dimensional sparse data in an unsupervised
manner. The co-occurrences learnt in this manner occur at a global level and are not neces-
sarily effective in discriminating one class from another. We, on the other hand, explicitly
learn discriminative combinations which take into account co-occurrence and relative spatial
position and orientation information.

Representations based on Deformable Part Models (DPM) [8, 12, 23] learn object parts
which have loose semantic connotations. They do well in capturing the frequently occurring
structures in positive images. But they need to employ multi-component models to capture
intra-class diversity, which is more computationally expensive. Our method is able to learn
both frequently and infrequently appearing patterns without any additional computation. Ad-
ditionally, each visual n-gram we learn represents a component of a scene as opposed to an
entire object, and is able to detect those components even if the rest of the object is signifi-
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Figure 2: Anoverview of our approach. Our method (a) extracts mid-size patches at different scales and computes
a visual codebook representation. (b) The mutual relationship between these visual words is learnt using categorical
decision trees, which are then used to compute a feature vector for each image (¢ & d). (e) A classifier can then be
learnt using standard SVM.

cantly occluded.

ObjectBank [16] and mid-level visual concepts [17] learn a set of object classifiers. The
responses of these classifiers at different locations in an image are aggregated to obtain the
overall image representation. These representations are not learnt in a bottom-up manner
from the training data and are limited to a pre-defined finite list of visual concepts.

Singh et al. [26] proposed a method for unsupervised discovery of a set of discrimina-
tive mid-level patches appearing frequently in a dataset. They treat each patch individually
and do not exploit the mutual relationships between them. They discussed the concept of
doublets, i.e. pairs of mid-level patches that frequently co-occur in a certain spatial con-
figuration. They, however, do not explicitly learn doublets. They are instead discovered
after-wards based on the co-occurrence statistics of mid-level patches. Further, these dou-
blets do not necessarily capture discriminative patterns. We, on the other hand, explicitly
learn combinations of mid-level features that capture discriminative relationships. Our n-
gram representation can learn combinations containing more than two patches as well.

3  Our Approach

Figure 2 gives an overview of our approach to learn discriminative visual n-grams. We start
by densely extracting image patches from the training images, which are then each repre-
sented using a visual word descriptor. We adapt categorical decision tree model to represent
and learn a combination of mid-level patches whose spatial co-occurrence relationship can
provide a discriminative vote for the presence or absence of the target image class. We refer
to such combinations as discriminative visual n-grams. To efficiently learn a diverse variety
of such combinations, we employ a boosting framework. We exploit these n-grams along
with a spatial pyramid framework to compute a feature representation for an image. The rest
of this section discusses each of these steps in further detail.

3.1 Codebook Generation

First, we densely extract mid-size patches at different scales from the training images. We
reject patches that have high overlap with other patches from the same image or have very
weak gradient energy (and thus limited discriminative potential). A SIFT descriptor [19] is
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Figure 4: Spatial co-occurrence vector v; extracted over a 4-
neighborhood. Each dimension index refers to specific position
and scale relative to the anchoring patch (in red). The value
of each vector element captures the visual appearance of the
respective neighboring patch.

Figure 3: Spatial neighborhood for
a given mid-level patch (shown in red).
Patches included in the neighborhood
are shown in blue. Best viewed in color.

computed for every patch. We apply standard k-means clustering to learn a codebook. The
clusters that are either weakly populated or only contain members from the same training
image are eliminated. The medoid of each of the clusters in this pruned set becomes a
codeword. Once a codebook has been learnt, the SIFT descriptor for a given image patch
can be quantized to the nearest codeword representation.

3.2 Learning a Discriminative Visual N-gram

Our goal is to next discover groups of codewords found to occur in each others’ neighbor-
hood in a given set of positive images, but not in negative images, or vice-versa. Given an
image, we extract mid-level patches over a dense grid across multiple scales. Each patch is
represented by the nearest codeword (in SIFT space). It is noteworthy that our framework
is generic and can be used as it is with representations other than SIFT as well. For each
patch, we extract a vector of the indices of codewords representing the patches in a spatial
neighborhood. This vector implicitly encodes the spatial configuration information for the
patch. A categorical decision tree model is employed to learn the combinations of codewords
that co-occur in a set of images, and are able to vote for the presence or absence of an image
category.

3.2.1 Spatial Co-occurrence Vector

The information about co-occurrence and relative positions and scales of different codewords
is encoded by means of a spatial co-occurrence vector. For each mid-level patch in the train-
ing set, we define a neighborhood over nearby grid locations and adjacent scales. Multiple
scales are included to obtain a representation robust to scale variation of the scene. A visual
representation of this neighborhood is shown in Figure 3. The current patch is shown in
red, and the blue dots denote the patches in its spatial neighborhood. For a grid location
(x,y), we include patches within a 24-neighborhood of this location over k scales. We con-
catenate the indices of the codewords representing these neighborhood patches to obtain a
(24425 x k) dimensional spatial co-occurrence vector. Each dimension index of this vector
refers to a particular position and scale relative to the current patch, while the value of the
corresponding vector element captures the visual appearance of this neighboring patch. A
simple illustration can be seen in Figure 4. Capturing the spatial configuration in this manner
empowers us to readily learn discriminative visual n-grams (details in Section 3.2.3).
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Figure 5: Learning a categorical decision tree. (a) All occurrences of codeword co in training images. (b)
Extraction of VY, set of spatial co-occurrence vectors. (c) Categorical decision tree that best separates these vectors
into positive and negative instances. (d) Visual n-gram.

3.2.2 Modeling a Visual N-gram

Let ¢; and c; denote codewords i and j. Given a mid-level patch at location (x,y) and scale s,
we define an indicator variable A;(x,y,s) to denote the presence or absence of the codeword
c;. That is, h;(x,y,s) = 1 if the the patch p, , is represented by the codeword c;, and 0 oth-
erwise. Consider a combination of two codewords c; and c; appearing in locations (x;,y;, s;)
and (x;,yj,s;) respectively. This combination can be mathematically represented as:

hi(xivyivsi)zlv and hj(xjaijsj)zl (l)
This representation can be further generalized as follows:
hi(xi,yi,si) = bi, and hj(x;,yj,s;) =b; 2

where b; € 0,1 indicates the presence or absence of the codeword ¢;. The above equation
thus captures the co-occurrence relationship of two codewords at given locations.

Here we seek to learn combinations of codewords that capture discriminative informa-
tion and can vote for the presence or absence of the targeted image class. A vote 8 by a
combination of codewords ¢; and c; can be represented as:

O(ci,cj) =K if  hi(xi,yi,si) = bi, and hj(xj,y;,s;) =b; 3)

where K € 4+1,—1 denotes the presence or absence of the target image class. This equation
represents a bigram, and can be further extended to n-grams including more than two code-
words. A categorical decision tree provides a natural and intuitive choice to represent and
learn these n-grams, where it can be shown that each path of the decision tree from the root
node to the leaf node is mathematically equivalent to eqn. (3).

3.2.3 Categorical Decision Tree

We refer the interested reader to [25] for details on definition and representation of decision
trees, and focus here instead on how we exploit them to discover discriminative visual n-
grams. A categorical decision tree refers to a decision tree where the decision rules are not
based on continuous variables, but on categorical variables.

An illustration of how we learn these decision trees is shown in Figure 5. We start by
locating all appearances of codeword ¢y in the training images ( Figure 5(a) ). For each of
these occurrences, we extract the corresponding spatial co-occurrence vector ( Figure 5(b)
). Let the set of all these vectors be V. Each of these vectors is assigned the same class
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(a) ' ' )

Figure 6: Examples of visual bigrams learnt on Graz-01 bike dataset. Each subfigure shows a bigram detection
on two different images. Detected patches are highlighted in blue and white to show the relative spatial position.
Comparisons of their visual appearance are shown in the bottom row.

label as that of the source training image. We now learn a decision tree that best splits V°
into positive and negative instances ( Figure 5(c) ). To learn the decision rules, we employ
a greedy approach that minimizes the classification error at all leaf nodes via maximization
of information gain. Each path from the root node to a leaf node of this decision tree repre-
sents a visual n-gram, which can be mathematically represented as eqn. (3). Implicitly, this
categorical decision tree captures the spatial configuration and co-occurrence relationships
of a set of codewords that can vote for discriminating the positive and negative classes. As
an example, the path from the root to the leftmost leaf node in the decision tree learnt in this
illustration ( Figure 5(c) ) represents a discriminative visual n-gram ( Figure 5(d) ) which can
vote for the presence of the positive image class as per the equation:

0(co,c1,ca,02) =1 if  ho(x;,yi,si) =1,
and hy(xiy1,yi,si) =1 4
and (hy(x;,yi-1,8;) = 1 || ha(xi,yi-1,8:) = 1)

We refer to this decision tree and the corresponding n-grams as being anchored at the code-
word cg, since the decision rules consider values at locations defined relative to the location
in which cg appears. In a similar manner, we learn a categorical decision tree anchored at c;,
for each codeword c; in the codebook.

3.2.4 Boosting

The technique discussed above learns one categorical decision tree anchored at a codeword
¢i. Such a representation, however, may not be comprehensive enough to handle the diver-
sity in the image dataset. In particular, same codeword can potentially appear in different
contexts in different images, or even different parts of the same image. To obtain a richer
representation that can account for different spatial contexts that a codeword ¢; might appear
in, we employ a boosting framework to learn a series of categorical decision trees.

Figure 6 shows examples of visual bigrams learnt on Graz-01 bike dataset. Each bigram
detects mid-level patches with similar appearance and same relative position on different
images. The patches constituting the n-gram are highlighted in blue and white in the source
images. The bottom row of each subfigure shows comparisons of their visual appearance.

3.3 Feature Computation

Having learnt a series of discriminative visual n-grams, they can now be used to compute a
feature representation for an image. Given an image, we locate all the patches represented
by the codeword c; and extract the corresponding spatial co-occurrence vectors. We use the
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Figure 7: Visual bigrams on bike dataset. These were detected on some positive as well as negative test images.
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categorical decision trees anchored at ¢; to classify these vectors. Each path to a leaf node
of a decision tree i.e. each visual n-gram contributes one feature value to the overall image
representation. For a negative leaf node, the feature value is given by calculating the fraction
of the vectors that are classified at this node, and is indicative of the occurrences of ¢; that
vote negatively for the target class. A higher feature value at such nodes will indicate lesser
likelihood of the target class being present. A vector being classified at a positive leaf node
implies that an n-gram belonging to the target class has been detected. Here, we compute the
distance between the raw sift representations of image patches that constitute the n-gram and
the codewords representing these patches, thus comparing the appearance of the detected
occurrence with the visual n-gram we have learnt. To ensure the feature values are in the
range 0 to 1, we apply the exponential function to the negative of the distance value. A
higher feature value at these nodes implies that the detected combination closely matches
the learnt visual n-gram, and thus votes strongly for the presence of the target class.

Feature values are computed in this manner for all the categorical decision trees we had
learnt, and concatenated to obtain the complete feature vector. Motivated by the success of
spatial pyramids [14, 23, 30], we further divide the image into four uniform quadrants and
compute a feature vector for each. The concatenation of these four vectors and the image-
level feature vector gives us the final image representation, which is L2 normalized to sum
up to 1.

Finally, we employ the standard linear Support Vector Machines (SVM) to learn a one-
versus-all model for each category. We use the 1ibSVM [4] library.

4 Experiments

In this section, we evaluate the performance of our algorithm on the tasks of scene and event
classification, and present quantitative and qualitative results. We test our approach on four
publicly available datasets: Graz-01 [22], UTUC 8-sports event dataset [15], INRIA horse
images dataset [1] and Land-Use dataset [31]. For all the experiments discussed here, we
extract non-overlapping patches of size 8x8 pixels at 7 different resolutions. and learn a
codebook of size 1024. The effect of varying codebook size on classification performance
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Methods Bike | Person | Average

PIWAH 1 SPM [13] | 874 | 846 | 860 Methods Accuracy

NBNN [2] " 1900 | 870 88.5 ERC-Forest [20] 85.30

HOF [5] 94.0 | 84.0 89.0 vQ[i17] 91.40

SPCK+ [31] 91.0 | 872 89.1 VC[17] 9247

Singh et al. [26] 87.0 95.0 91.0 IFV [24] 92.94 + 0.62

FLH + BOW [9] 950 | 90.1 92.6 Ours 91.76 + 0.33

GRID-FLH [9] 914 | 958 | 936 Ours + [FV 94.71 + 031

TFV [24] 930 | 960 | 945 — )

Ours 93.0 05.0 94.0 Table 2: Classification accuracy on INRIA horse im-

Ours + IFV 94.0 | 97.0 95.5 ages dataset. All values in %. Standard deviations are
Table 1: Equal Error Rates on Graz-01 dataset. All computed over 10 random splits.

values in %.

is shown in Figure 8. The performance in general increases as we increase the codebook
size. We include k = 2 neighboring scales while defining the neighborhood to extract spa-
tial co-occurrence vectors, resulting in a 74-dimensional vector. Using boosting we learn 5
categorical decision trees anchored at each codeword c;, thus obtaining a total of 5120 cate-
gorical decision trees. Figure 9 shows a gradual but consistent upward trend in classification
rate as we include more boosting iterations.

For fusing our image representation with IFV features, we concatenate the two feature rep-
resentations. Before concatenation, we apply PCA and reduce the individual feature repre-
sentations to 200 dimensions each. This helps limit the final feature vector to a low dimen-
sionality, thus making the computations faster.

Below we discuss the results we obtained on the four datasets. Some qualitative results are
shown in Figures 6, 7 and 10.

Graz-01 Dataset: This dataset consists of two object categories, bike and person, and
a set of background images. In these images the targeted objects occur at different scales
and poses, and are often placed in highly-textured background. Similar to the previous eval-
uations on this dataset [9, 22], we randomly sample 100 positive images and 100 negative
images (50 each from the background set and the other object class) for both training and
testing. We compare the ROC Equal Error Rate (EER) for our approach with other state-of-
the-art methods in Table 1. We obtain an average EER of 94.0%, which compares favorably
with the existing methods. Our representation offers an excellent complementarity to global
image representations, such as Improved Fisher Vectors (IFV) [24]. Specifically, we fuse
our mid-level feature representation with IFV, the result obtained from which is reported in
the same table. We obtain an average classification accuracy of 95.5% which is higher than
the result obtained using either feature individually, and is superior of those obtained by the
state-of-the-art methods. Further, the mid-level representation in Singh et al. [26] achieves
an EER of 91% compared to our 94%, thus showing that learning combinations is more
discriminative than considering the mid-level patches individually.

Some qualitative examples of visual bigrams learnt on bike category are shown in Fig-
ure 6. They detect mid-level patches with same relative spatial configuration and similar
appearance on different images. We show a few more examples in Figure 7 where the bi-
gram is detected on some positive as well as negative test images. In Figures 7(a)&(b), the
mis-classification occurs due to the presence of the same part (wheel) in both the images. In
Figure 7(c), the detected combination does not belong to the same object part in the two im-
ages, but shows strong visual similarity. Another example on the person category is shown in
Figure 10(a). This combination detects the face and neck of a person. In the middle image,
a similar visual pattern appears on an advertisement poster where a match is found.
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Methods Accuracy

Object Bank [16] 76.30 Methods Accuracy
Spatial Pyramid [14] 81.80 BOW [9] 71.90
HIK [29] 84.21 Spatial Pyramid [14] 74.00
Hybrid-Parts + GIST-color + SP [33] 87.20 FLH + BOW [9] 77.20
VC+VQ[17] 88.40 SPCK++ [31] 77.38
IFV [24] 90.80 + 0.12 GRID-FLH [9] 7920
ISPR + IFV [18] 92.08 IFV [24] 85.05
Ours 83.54 £ 041 Ours 7952
Ours + IFV 93.12 + 0.28 Ours + IFV 87.24

Table 3: Average classification accuracy on UIUC
8-sports events dataset. All values in %. Standard devi-
ations are computed over 10 random splits.

Table 4: Average classification accuracy on Land-
Use dataset. All values in %.

(¢) Croquet class in UIUC-8 Dataset (d) Airplane class in Land-Use Dataset

Figure 10: Examples of discriminative visual n-grams discovered on different datasets.

INRIA Horses Dataset: This dataset consists of 170 horse images and 170 background
images. The dataset poses a challenge due to intra-class variability in shape and scale of
the target object, as well as background clutter. Following [17], we randomly divide images
from each class into two halves, and use one half for training and the other for testing. The
experimental results are shown in Table 2. We obtain a classification rate that is comparable
to the state-of-the-art. Together with IFV features, we obtain a classification accuracy higher
than that given by either of the features individually, and outperform the best published
results so far. Figure 10(b) shows an example visual n-gram that we learnt for this category.

UIUC 8 Sports Events Dataset: This dataset contains images from 8 sport events. Sim-
ilar to [18], we randomly select 70 images for training and 60 for testing from each of the
classes. Table 3 shows a comparison of the average classification accuracy we obtained with
other methods. Here too, the combination of our features with IFV boosts the accuracy and
outperforms all the state-of-the-art methods, again demonstrating the complementary nature
of the two. Per-class classification accuracy obtained using the fused features is listed in the
Table 5. We note that the performance is relatively weaker on the class bocce since both
bocce and croquet are played in similar locations and hence share a lot of common visual
features. Owing to this, 10% of bocce images in our test set were misclassified as croquet.
In Figure 10(c), we show examples of a visual n-gram that detects some details of a player’s
posture in croquet images .

Land-Use Dataset: This dataset consists of 21 land-use classes extracted from aerial
orthoimagery. Each class consists of 100 images measuring 256x256 pixels. We randomly
split each class into two sets of 50 images, and use these for training and testing respectively.
We compare the average classification accuracy from our experiments on this dataset with
other state-of-the-art methods in the Table 4. We achieve higher performance than most
other methods. In combination with IFV features, we again obtain improved performance
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‘ | badminton | bocce [ croquet | polo [ climbing [ rowing [ sailing | snowboarding |

badminton 98 0 0 0 0 2 0 0
bocce 5 75 10 3 0 2 2 3
croquet 0 7 92 0 0 0 0 1
polo 0 0 0 95 2 2 1 0
rock climbing 0 0 0 0 100 0 0 0
rowing 2 0 0 0 3 95 0 0
sailing 0 0 0 0 0 2 98 0
snowboarding 0 0 0 0 5 3 0 92

Table 5: Confusion matrix (rounded values in %) obtained using our method combined with IFV [24] on UIUC
8-sport events dataset.

over both the features and outperform the state-of-the-art results. Examples of a visual n-
gram detected on airplane are shown in Figure 10(d). It could successfully detect similar
visual elements despite the object appearing at different scales in these images.

5 Conclusion

In this paper, we proposed an approach to learn discriminative combinations of mid-level
patches. Such combinations, termed as visual n-grams, represent spatial configurations and
co-occurrence relationships of mid-level visual elements that can best discriminate the target
class from other classes. We exploit categorical decision trees to capture such relationships.
Our algorithm is by nature flexible to automatically learn a variety of combinations with dif-
ferent number of visual elements and different configurations. Qualitative evaluation shows
that our method can discover combinations of image parts that meaningfully capture details
about the structural components of the scene being classified. We demonstrate the effective-
ness of our image representation by applying it to the task of image classification on four
datasets. Our method achieved high classification accuracy on each of these datasets, and by
fusing visual n-grams based representation with global IFV features we achieved improved
performance over the best published results so far.
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