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Abstract

This supplementary material contains more details of our feature tracks selection and
further experimental results of our method as follows: Section 1 describes the pseudo-
code for our feature tracks selection; Section 2 demonstrates experimental evaluation of
our method on synthetic data; Section 3 presents the visualization of our results on the
Internet data published in [6] and the challenging data Quad published by [3].

1 Pseudo-code for feature tracks selection

Algorithm 1 Feature tracks selection.
1: Initialize: Sort all feature tracks by their lengths in descending order, and let T represent

the sorted set of tracks;
2: for i = 0 to K do
3: Set the current set of cameras C to /0;
4: Choose the first track t1 in T, update C as C= C∪Ct1 , and remove t1 from T;
5: while C 6= C∗ do
6: Try to find a track t in T which satisfies Ct ∩C 6= /0 and Ct *C;
7: if It fails to find such t then
8: break;
9: end if

10: Update C as C= C∪Ct , and remove t from T;
11: end while
12: if C 6= C∗ then
13: break;
14: end if
15: end for
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Let C∗ be the set of all connected cameras, and Ct be the set of cameras on a feature
track t, then our method of feature tracks selection can be summarized as Algorithm 1. K is
set as 30 in our experiments.

2 Evaluation on synthetic data
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Figure 1: Configuration for synthetic data generation. We randomly place cameras c0,c1,
and c2 and 500 scene points as illustrated here. We then test each method 100 times on the
randomly created images, and evaluate their accuracy with respect to the ground truth.

We evaluate the performance of our algorithm on synthetic data with known ground truth.
The synthetic data consists of three cameras and 500 scene points generated according to the
following setting. As illustrated in Figure 1, camera c0 is placed at the world origin and
camera c2 is at a random location away from c0 by 0.2 unit. The position of c1 is generated
in different ways to evaluate different aspects of the SfM system. Each camera has a field
of view of 45◦ and image resolution of 352× 288 pixels. The scene points are generated
randomly within the viewing volume of the first camera, spanning a depth range of about 0.5
unit. The scene distance from the first camera is about 1 unit.

Two metrics are used to evaluate the accuracy of computed camera poses. The error
of relative translation directions terr is the mean angular difference (in degrees) between
the estimated and the true baseline directions. The error of camera positions cerr is the
mean Euclidean distance between the estimated and the true camera positions. We report the
average results of 100 random trials for each method.

Comparison with [1]. We compare our method with the method in [1] to demonstrate
the robustness of our algorithm with collinear camera motion. We randomly sample c1 to
vary the angle ∠c1c0c2 from 0.1 to 5 degrees while ensuring c1 keep equal distances from c0
and c2. Image coordinates of the projected 3D points are perturbed by zero mean Gaussian
noise with standard deviation σ = 0.4 pixels. A comparison of the results from these two
methods are shown in Figure 2. According to both error metrics terr and cerr, the performance
of our method is quite stable under collinear camera motion.

Comparison with [4]. We compare our method with the method in [4] on data with
weak association. In this experiment, we fix the c2 at the point (−0.2,0,0) and randomly
sample c1 with ∠c1c0c2 fixed at 45 degrees. Moreover, we fix the number of feature cor-
respondences between c1 and c2 at 10, and adjust the standard deviation σ of the Gaussian
noise on feature positions from 0.1 to 1 pixel. This setup simulates situations of weak data
association (i.e., the essential matrix between c1,c2 is poor). The reconstruction accuracies
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Figure 2: Comparison with the method in [1] under collinear camera motion. terr and cerr
are the reconstruction errors in relative translation directions and camera positions. The
horizontal axes of both charts are the angle ∠c1c0c2 formed by the cameras c0,c1, and c2. It
is clear our method is robust to collinear motion, while the method in [1] is not.
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Figure 3: Comparison with the method in [4] on data with weak association. terr and cerr
are the reconstruction errors in relative translation directions and camera positions. The
horizontal axis σ is the standard deviation of the Gaussian noise on image feature locations.
Our method is more robust than [4] to heavily contaminated essential matrices.

of both methods are reported in Figure 3. It is clear that as σ increases, our method produces
more accurate results than [4] according to both metrics. Note that our method can work
even when there are not enough corresopondences (e.g. less than 5) between c1 and c2 to
compute the essential matrix, while the method in [4] will fail in this case.

3 Visualization of results on Internet data

Figure 4 visualizes reconstruction results of our method on the Internet data published in [6].
For quantitative evaluation, please refer to Tables 3 and 4 in the paper.

We also try our method on the challenging Quad data published by [3], which consists of
6514 images and has poor epipolar geometries. Our method generates a distorted result for
this example without geotags. However it produces a reasonable result as shown in Figure 5,
when camera orientations from Bundler [5] are used (instead of those computed by rotation
averaging). The rotation averaging method in [2] does not guarantee the global optimal result
because the rotation manifold constraint makes the problem complicated. This experiment
seems to suggest that rotation estimation is the current bottleneck for global SfM.
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(a) Almo (b) NYC Library

(c) Ellis Island (d)Notre Dame

(e) Montreal N.D. (f) Vienna Cathedral

(e) Tower of London (f) Piazza del Popolo
Figure 4: Reconstruction results on the data released by [6].
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Figure 5: The reconstruction result for Quad. The rotations from Bundler [5] are used for
this dataset.
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