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Figure 1: (a) The noisy predictions made by the per-pixel unary classifiers. (b) The output of the CRF using only visual features. (c) The
use of auditory information improves material labeling. (d) Finally, joint optimisation between object and meterial categories improves
object labelling as well. (e) The ground truth. (f) The input image, showing the locations where sound information is present.

It is not always possible to recognise objects and infer material prop-
erties for a scene from visual cues alone, since objects can look visually
similar whilst being made of very different materials. In this paper, we
therefore present an approach that augments the available dense visual
cues with sparse auditory cues in order to estimate dense object and ma-
terial labels. Since estimates of object class and material properties are
mutually-informative, we optimise our multi-output labelling jointly us-
ing a random-field framework. We evaluate our system on a new dataset
with paired visual and auditory data that we make publicly available. We
demonstrate that this joint estimation of object and material labels signif-
icantly outperforms the estimation of either category in isolation.

By using sound, we are able to infer information about an object’s ma-
terial properties that would be difficult or impossible to obtain by visual
means. This is evident from Figure 1 where we can see that the table, mug
and wall all have similar local colour and texture, even though the table is
made from wood, the wall from gypsum and the mug from ceramic. This
leads to various object and material class labels being incorrect (Figure
1b). However, when we tap various objects in the scene and incorporate
the resulting auditory information into our segmentation process, our pre-
dicted material label significantly improve (Figure 1c). We can then use
these predictions to improve our object class predictions as well (Figure
1d).

Existing segmentation datasets do not provide audio-visual annota-
tions as ground truth. Furthermore, it is not possible to simply aug-
ment them audio data, since we would need the original objects in the
dataset to extract sound. As a result, we create our own dataset which we
make publicly available1. In contrast to previous segmentation datasets,
we annotate ours in 3D. We captured 9 different long sequences using a
consumer-grade depth camera (ASUS Xtion Pro) and then reconstructed
the 3D scene using the system of [4, 5]. This reconstructed scene was
then annotated in 3D using an interactive scene segmentation framework
[2]. This method allowed us to significantly decrease the annotation time
since a typical sequence of 2000 frames could be fully annotated in about
45 minutes, which is far less than the 20-25 minutes per frame required to
label each frame of the CamVid dataset by hand [1].

We captured our sound data using a portable condensor microphone
(Samson GoMic). Due to the localised nature of sound, we can only
associate sound data with the points at which the object was struck. This
was done by annotating the approximate location at which the object was
struck in the 3D reconstruction.

1http://www.robots.ox.ac.uk/~tvg/projects/AudioVisual/

Since auditory information obtained by tapping objects is only avail-
able at sparse locations in an image, we need a method of propagating this
information to the whole image. To this end, since estimates of object and
material properties can be mutually informative, we use a two-layer CRF
to model the joint estimation of object and material labels, and allow the
two types of estimate to influence each other by connecting the two layers
of the CRF with joint potentials. We minimise the energy,

E(x|D) = EO(o|I)+EM(m|I,A)+EJ(o,m|I,A), (1)

where x is an assignment to the random variable X that takes a label
[o,m] from the product label space of object and material labels, O×M.
The energy is conditioned on the visual and auditory data D = {I,A}.
EO(o|I) is the energy for the object labelling, conditioned on image data
I, EM(m|I,A) is the energy for the material labelling, conditioned on im-
age data I and audio data A, and EJ(o,m|I,A) is the joint energy function
linking the object and material domains.

The final joint energy function takes correlations between objects and
materials into account, and encourages consistency between the two label
categories. The joint potentials were learnt from the conditional distribu-
tions of the two labels in the training set. The first two energy functions
consist of unary and pairwise potentials. The per-pixel unary potentials
are obtained from a joint boosting classifier whilst the pairwise poten-
tials takes the form of a mixture of Gaussian kernels to facilitate efficient
mean-field inference [3, 6].

Using auditory data, the mean intersection-over-union (IoU) for ma-
terial classification improves by 3.5% over the baseline which used only
visual information. By employing joint optimisation between object and
material classes, a further 4.1% improvement was obtained for object
classification.
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