YIN, CHAI, ZHOU, CHEN: WEAKLY SUPERVISED METRIC LEARNING FOR SLR 1

Weakly Supervised Metric Learning towards
Signer Adaptation for Sign Language
Recognition

Fang Yin'2 "Key Lab of Intelligent Information
fang.yin@vipl.ict.ac.cn Processing of Chinese Academy of
Xiujuan Chai'2 Sciences (CAS), Institute of Computing

Technology, CAS

xiujuan.chai@vipl.ict.ac.cn
Beijing, 100190, China

Yu Zhou?®

zhouyu@iie.ac.cn 2 Cooperative Medianet Innovation Cen-

Xilin Chen'2 ter, China

xlchen@ict.ac.cn 3Institute of Information Engineering,
CAS

Beijing, 100093, China

Abstract

Inter-signer variation is one of the challenging factors in real application of Sign
Language Recognition(SLR). To tackle this problem, this paper proposes a weakly su-
pervised metric learning framework to realize signer adaptation with some unlabeled
sign data of the new signer. Concretely speaking, through the labeled data of several dif-
ferent signers, a generic distance metric can be learnt. Then the key step is to adapt the
generic metric to the new signer according to the collected unlabeled samples. Clustering
constraint and manifold constraint are considered together to realize the weakly super-
vised metric learning. In our implementation, a novel fragment-based feature is designed
to describe each sign by fusing both trajectory and hand shape features, which is also
proved more discriminative than the frame-based multi-modal feature. Extensive exper-
iments on our collected large vocabulary datasets convincingly show that the proposed
method is effective for signer adaptation and outperforms the state-of-the-art methods on
signer-independent SLR.

1 Introduction

Automatic Sign Language Recognition (SLR), as one of the important problems in pattern
recognition field, has attracted more and more researchers’ attention and achieved rapid
progress in over twenty years. SLR systems usually work well if the training and probe
data come from the same signer. But when confronted with a new signer, the performance
will decrease dramatically because of the big variations among different signers. There-
fore, the signer-independent SLR has become one of the bottleneck problems which blocks
the recognition algorithms to be practical. Although the user of the SLR system is usually
unknown, fortunately, more and more data of this new signer can be collected sustainably.
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These unlabeled data can help to refine the training model and thus improve the recognition
performance. As a result, the SLR system will become more and more easy-to-use for this
signer because of the adaptation. This paper just focuses on the signer adaptation and tries
to tackle the signer-independent SLR problem.

In recent years, many attempts have been made to cope with the inter-signer variation
through signer adaptation. Borrowing from speaker adaptation in speech recognition, eigen-
voice(EV) [8], maximum likelihood linear regression (MLLR) [9] and maximum a posteriori
(MAP) [6] are used in SLR signer adaptation. Ong et al.[14, 15] firstly used MAP in sign-
er adaptation for gesture recognition. Von et al [16] combined MLLR and MAP to realize
signer adaptation for isolated SLR. Later they extended their work to continues SLR and
combined EV, MLLR and MAP [17]. Farhadi ef al. [5] used the adaptation data from the
new signer to generate a comparative feature. Oya and Lale[1] presented a multi-class clas-
sification strategy for Fisher scores and applied it to sign language recognition. They also
proposed a signer adaptation method during the score space selection phase. The above
mentioned methods are all supervised adaptation, which means that the adaptation data from
the new signer must be labeled. But in realistic practice, collecting labeled data is laborious
and time-consuming. Comparatively, unsupervised adaptation is more natural and friendly
for the easy collection of plenty of unlabeled data from the daily use. However, the work in
this category is relatively rare. Zhou et al [23] proposed an unsupervised adaptation method
based on hypothesis comparison guided cross validation.

Most of the previous work used HMM and its variations. However, their performances
were not satisfied especially confronted with insufficient training samples. Recently, many
novel techniques were introduced into SLR area, such as sequential pattern trees[13], trajec-
tory matching[2] and CRF[7], etc. It is well known metric learning is an important topic in
machine learning and widely used in many applications[21]. Studies have proved that learn-
ing a proper distance metric could help to improve the performance of classification[20].
Therefore, this paper proposes a new unsupervised signer adaptation method based on dis-
tance metric learning.

Metric learning can be categorized as supervised metric learning, unsupervised metric
learning, semi-supervised metric learning and weakly supervised metric learning. In super-
vised metric learning[4, 20], the labels of training data are known while in unsupervised
metric learning[12], the labels of the training data are totally unknown. Semi-supervised
metric learning[11] is a combination of supervised metric learning and unsupervised metric
learning. In weakly supervised metric learning[10], the labels for training data are uncertain.

In this paper, we introduce metric learning into SLR for the first time and propose a signer
adaption framework to address signer-independent SLR. For adapting the general model
to the new signer, both clustering and manifold constraints are considered in the adaptive
distance metric optimization.

The contribution of our work mainly lies in three-folds. Firstly, a Weakly Supervised
Metric Learning(WSML) framework is proposed, which combines the clustering and mani-
fold constraints simultaneously. Secondly, the general framework is applied on signer adap-
tation and achieves good performance. Thirdly, a fragment based feature is designed for sign
language representation and the effectiveness is verified in large vocabulary datasets.

The remainder of the paper is organized as follows. Section 2 is the formulation and
optimization of our proposed weakly supervised metric learning method. Section 3 is its
application on signer adaptation. Wide experiments are reported in Section 4 and finally is
the conclusion in Section 5.
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2  Weakly Supervised Metric Learning

Let X; = {x1,...,x;} be the labeled training data and ¥ = {y1,y2,...,y;} is the label set where
y; is the label of x;. X, = {x/41,..,%/,} represents the unlabeled adaptation data sampled
from a different probability distribution. X = [x{,...,X;,X; 41, ..., X/, i the data matrix of all
samples. The target is to learn a distance metric D: X x X — R which is robust to both X;
and X,,. In the Mahalanobis distance, D can be determined by a positive semi-definite matrix
M:

D(x,-,xj) = (x,'—xj)TM(xi—xj). (1)

So the goal of metric learning is to learn a matrix M for distance metric D.

Our proposed Weakly Supervised Metric Learning(WSML) framework can be decom-
posed into two key steps. First is to learn a generic metric from the given labeled data.
Then is to realize the distance metric adaptation by considering the clustering and manifold
constraints with the unlabeled data.

2.1 Learning a Generic Distance Metric

To learn a generic distance metric, the labeled data are used under clustering assumption with
classical large margin hinge loss. Specifically, the distances between data points within the
same cluster(with same label) should be minimized and the distances between data points
from different clusters(with different labels) should be maximized. Here we define the index
set with same labels as S, = {(i, j)|yi = y;,%i,Xx; € X;} and the index triplet B, = {(i, j, k)|y; =
Yj»Yi # YioXi, Xj, Xk € X; }. The objective function is

minJ, :nﬂl/lin Y, De(xixj)+ Y, [14Dy(xi,xi) — Dylxi,xj)]+
§ (i,j)€Sq (i,j,k)€Byg 2)
s.t.Mg >0,

where the term [z]+ = max(z,0) denotes the standard hinge loss and M, is the metric matrix
for distance metric Dy.
The objective function (2) can be rewritten by incorporating Eq.(1):

minJ, = min Z (xi —x;) My (x; — x;)

& (i.j)eS,
+ Z [1+ (x; —xk)TMg(xi —xx) — (x; _xj)TMg(xi —xj)]+
(i7j7k>€Bg (3)
=min Y MG+ Y L er(MCy) (M)l
(i.j)€Sg (i,J,k)€Bg
s.t.Mg > 0.

where C,'J' = (x,' —xj)(xi —)Cj)T.
The expression (3) can be optimized by gradient descent algorithm. The detailed opti-
mization algorithm is similar with [20].

2.2 Distance Metric Adaptation

The generic distance metric is valid for the data coming from the same distribution with the
training data. However, for a different data distribution, the distance metric would be failed.
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This section will give the details on our proposed weakly supervised metric learning method.
In our distance metric adaptation, two constraints are considered in the optimization, which
are clustering constraint and manifold constraint respectively.

2.2.1 Clustering Constraint

With the generic distance metric D, determined by matrix M, and the labeled data set Xj,
a classifier is trained. Thus the labels of the unlabeled data can be predicted. We hope that
the generic distance metric can be adaptive to the data from a different distribution through
the predicted labels, although they are uncertain. For each unlabeled data x;, the classifier
gives a predicted label y; and belief b;, where 0 < b; < 1. Here the label y; is not precise so
the metric learning method with these uncertain labels is weakly supervised. The objective
function of clustering constraint is

Je= Z biD(XhXj) + Z bi[1 4 D(x;,x;) —D(xh)cj)]Jr @)
(i.7)€Se (i,j.k)E€B,

where S, is a index set defined as S. = {(i, j)|yi = yj,Xi € Xu,x; € X;}. While B is a triplet
set B. = {(i,7,k)|yi = yj,vi # Y, Xi € Xu,xj,xx € X}

2.2.2 Manifold Constraint

Here, one point should be noted that only partial data of the unlabeled set can be assigned the
correct labels with high believes. Thus we need to explore much more information provided
by lots of unlabeled data for the effective adaptation. To further investigate the topological
structure of the unlabeled data, manifold assumption is considered. Specifically, if two data
points x; and x; are close in the intrinsic geometry of Euclidean distance, then they should
also be close to each other in the new Mahalanobis distance. A straightforward expression
for manifold assumption is

u u
Tn="Y Y, (xi—x))" M(xi—x;)Wy, 5)
=l 1 j=l+1

where W is a weight matrix. W;; = 1 if x; is among the k—nearest neighbors of x; or x; is
among the k—nearest neighbors of x;. Otherwise, W;; = 0.

2.2.3 Formulation and Optimization

The final objective function of metric adaptation can be formulated by incorporating expres-
sions (4) and (5) into (2).

minJ = min(J, + otJ. + BJn), ©)

where o and 3 are the weights corresponding to clustering constraint and manifold constraint
respectively.

Define an active triplet set By; C By, such that (7, j, k) € B, could trigger the hinge loss
of J, in Equation (6). While B.; C B, is an active triplet set for J.. in Equation (6). To solve
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Figure 1: The pipeline of the signer adaptation.

the problem (6), optimization by gradient descent algorithm is also adopted. The gradient is

Z Gij+ Z (Cik—Cij)

(i,j)€S, (i,),k)EBgs
) : . @
+ Z b,‘C,‘j+ Z b,’(C,'k*Cij)+ Z Z Cl‘jVVij.
(i,7)E€Se (i,j,k)EBes i=l+1 j=I+1

The detailed optimization is shown in Algorithm 1. The parameter Y in step 6 is the gradient
step-size and y > 0.

Algorithm 1 Optimization of Problem (6).

1: My := I {Initialize with the identity matrix }
2: t := 0 {Initialize counter}
3: while not converged do
4 update ng ) and BEISH)
5:  compute G;4+1 based on Equation (7)
6: M1 :=M; —YG
7
8
9

o ti=t+1
: end while
: return M,

3 Application on Signer Adaptation

In this section we will introduce how to apply the weakly supervised metric learning on
signer adaptation. The framework is described firstly. Then a fragment based feature is
introduced. Finally the detailed implementation of training and recognition is presented.

3.1 Framework

The pipeline of the signer adaptation is illustrated by Figure 1. Concretely speaking, the
features are extracted from the labeled signs and the unlabeled adaptation signs. With the
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Figure 3: Illustration for fragment-based feature extraction.

features of labeled training data, a generic distance metric can be learnt, with which a classifi-
er is trained. Then the labels of unlabeled data are predicted with believes. In the adaptation
stage, both the labeled and unlabeled training data are used for adaptive metric learning.
Specifically, the labeled data and the unlabeled data with their predicted labels are used to-
gether for clustering constraint, while the unlabeled data are used for manifold constraint.
The classifier based on the adaptive metric is suitable for the new signer and is used for
recognition.

3.2 Feature Extraction

Intrinsically, sign language can be regarded as a temporal ensemble of some action subunits.
Inspired from this point, a fragment based feature is proposed to characterize the approximate
subunits. A sign is partitioned into N fragments equally. We extract trajectory and hand
shape of each sign fragment Then they are fused into a whole feature vector which can
describe both the movement feature and the hand shape feature of the sign fragment.

Figure 2 is the illustration of trajectory feature extraction. With the help of the depth
data provided by Kinect, the 3D coordinates of 5 skeleton joints (left hand, right hand, left
elbow, right elbow and head) are used for trajectory representation. The trajectory feature
extraction are formed by normalization step and resampling step. In the normalization step,
the head point is used as a reference(the origin). The points of each joint in the fragment
could form a trajectory. Then resampling is performed along each trajectory by equidistant
linear interpolation. So L equally distributed points can be gotten in each trajectory. In our
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implementation, L = 10, and the dimension of the trajectory feature for each fragment is 120
(4x10x3).

Figure 3 is the illustration of hand shape feature extraction. The hands in each frame
are segmented based on the skin color model and the depth constraint. HOG[3] feature is
extracted from the segmented hand. Then PCA technique is adopted to reduce the dimension
from 324 to 51. In each fragment, the frame which is most similar to the average of all the
hand regions in the fragment is selected as the typical frame to describe this fragment. Here,
we use Euclidean distance to define the distances between the HOG features.

3.3 Training and Recognition

In the training stage, all the feature vectors of labeled and unlabeled sign data are used as
input. Then the adaptive metric M for new signer is learnt. Since M is a positive semi-definite
matrix, it could be decomposed

M=LTL. (8)

So the Mahalanobis distance between two points(x; and x;) with matrix M is

D(xi,xj) = \/(xi—xj)TM(x,' —Xj)

€))
= \/(x,-—xj)TLTL(x,-—xj) = \/(Lx,- — Lxj)T (Lx; — Lx;).

Equation (9) shows that the Mahalanobis distance with matrix M,, is equivalent to an Eu-
clidean distance of the data in the projected space transformed by matrix L. Therefore, all
the training data are projected with L for the subsequent recognition.

In the recognition stage, the simple KNN classifier is adopted. For a probe data point x,
it is also projected with L. Then the distance between x, and any training data point x; € X
can be calculated by Equation (9). The 3 nearest neighbors from the training data of the
probe data are selected and vote for the final recognition result.

4 Experiments

In order to evaluate the effectiveness of the proposed weakly supervised metric learning
method, experiments on signer-independent SLR are conducted. The details are given below.

4.1 Performance Evaluation
4.1.1 Dataset

We collected the Sign Language dataset using Microsoft Kinect. When capturing, each
signer stands before the Kinect at a distance around 1.5 meters to ensure his/her body is
completed captured in the screen. Our dataset contains 1000 signs of standard Chinese Sign
Language performed by 7 deaf students. Each signer performs each sign only once. Here we
define D; — D7 as group ID to indicate the 1000 signs performed by different signers.
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Table 1: Evaluation on parameter ¢¢ and 3
’Accuracy(%)\ﬁ =0pB=5B=7p=10p= 15‘
a=0 70.0 702 704 705 69.7
a=>5 70.2 704 706 71.0 69.8
=7 704 708 708 712 69.8
0 71.1 715 718 723 708
5 70.2 702 705 705 694

Table 2: Experimental Results with different features
y Group |Di Dy D3y Dy Ds Dg Dy Ave]
WSML(Frame) |65.4 70.2 64.1 62.6 65.4 75.5 63.0 66.6
WSML(Frag) [72.3 75.1 70.3 77.2 71.0 79.9 69.2 73.5

4.1.2 Evaluation on Different Parameters

In this section, we will first evaluate the performance of the proposed WSML with different
parameters in Equation (6) on above-mentioned dataset.

In this experiment, we use the data of D, — D7 as labeled training data and thus D is the
test signer. Half of the 1000 signs of the test signer is taken as the unlabeled adaptation data
and the rest 500 samples are the test data.

We evaluate the performance with different values of parameters o and . Table 1 gives
the performance and it shows that when oo = 10 and 8 = 10, we achieve the highest accuracy.
Thus in the following experiments, we fix the parameters to be o« = 10 and 8 = 10.

4.1.3 Evaluation on Different Features

In this part, the target is to verify the effectiveness of the proposed fragment-based feature. In
this experiment, the frame-based feature is taken as the comparison under the same WSML
framework. In the implementation, skeleton pairwise feature[19] and hand shape’s HOG
feature are extracted from each frame. To maintain the definite dimension, a resampling
technique is applied on the features and finally 15-frame features are generated by linear
interpolation and the final dimension is 915. The dimension of our fragment-based feature
is 855. The weakly supervised metric learning with our proposed fragment-based feature
and the frame-based feature are referred as WSML(Frag) and WSML(Frame) respectively.
In order to get more convincing results, the experiments here and in the following sections
are all conducted by leave-one-out cross validation strategy. In each fold, half of the data
from the adaptive signer is used for adaptation, and the remaining 500 samples are used for
test. The adaptation data and the test data will exchange so that the final recognition rate
is the average recognition rate over the whole 1000 samples of the adaptive signer. Table
2 shows the comparisons with two different features. We can obviously see that at least
in our framework, the fragment-based feature is much more effective than the traditional
frame-based feature with 6.9 percentage points performance improvement.
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Table 3: Effectiveness Verification.

| Group [ D1 Dy D3y Dy Ds Dg D; Ave]
ML |70.0 72.1 69.0 75.6 69.1 77.7 66.2 71.3
ML-Clus |71.1 73.6 69.5 75.7 68.8 80.8 67.4 72.4
ML-Mani |70.5 73.7 69.0 76.6 67.7 79.6 69.3 72.3
WSML |72.3 75.1 70.3 77.2 71.0 79.9 69.2 73.5
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Figure 4: The accuracies of our proposed method and the baseline methods are given in (a).
(b) shows the accuracies of our proposed method with different adaptation data sizes.

4.1.4 Evaluation on Different Constraints

In this section, we will show the effect of clustering constraint and manifold constraint re-
spectively. The configurations are the same as above experiment. The results are given in
Table 3, which includes the generic metric learning (ML), metric learning adaptation with
clustering constraint (ML-Clus), metric learning adaptation with manifold constraint (ML-
Mani), and the proposed weakly supervised metric learning with both constraints(WSML).
From this table, it can be seen that the two different constraints are both helpful for improv-
ing the performance of the signer-independent SLR comparing with the generic ML method.
When combining the two constraints, the signer adaption is more effective than using them
separately.

4.2 Comparisons with Other Methods

In this part, we will compare our method with some classic and state-of-the-art methods. We
set HMM[ 18] and Dynamic Time Warping (DTW) as our baseline methods because they are
typical models for sign language recognition. The input of HMM and DTW is the dense
frame-based features composed by concatenating hand shape feature and trajectory feature.
Besides HMM and DTW, ARMA[22] is also used as a comparison for its good performance
in handling the temporal sequential problems. Here, one point should be mentioned that
in our experiments, we use the source codes from [18] and [22] to realize HMM and AR-
MA methods respectively and use the matlab source code to realize DTW based method. In
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the methods mentioned above, the data from the new signer is directly fed into the recog-
nition algorithm and get the result with no adaptation. All experimental results are shown
in Figure 4(a), from which, we can see the distinctive advantage of our proposed method
over others in such a large vocabulary dataset. The figure shows that comparing with classic
methods (HMM and DTW), the accuracy is improved by 15-20 percentage points. And the
accuracy of our WSML method is about 10 percentage points higher that the state-of-the-art
method(ARMA). At the same time, the standard deviations of our methods are relatively
small and it means that our method has a stable performance. Comparing with the generic
metric learning(ML), the proposed WSML method could further increase the accuracy with
more than 2 percentage points.

4.3 Effect with Different Sizes of Adaptation Data

The experimental results in Section 4.2 show that the improvement of WSML comparing
with ML is not significant. One of the reasons is the limited adaptation data. In this sec-
tion, we will show the accuracy trend with the increasing of adaptation data size. In this
experiment, all data of D — D7 are used for training. Three groups of data are collected
from another signer, who is regarded as the test signer. Among the three groups of data, one
group (1000 samples) is used as test data and the others (2000 samples) are adaptation data.
We gradually add different amount of unlabeled data into adaptation, and get the recognition
performance for the same 1000 testing samples. Figure 4(b) shows the experimental result-
s and it can be clearly seen that the performance is better and better with more and more
adaptation data. The accuracy improvement is 4.6 percentage points with adaptation data
size of 2000. It can be predicted that the performance of our system can be close to that of
signer-dependent SLR case when enough sign data are collected for signer adaptation.

5 Conclusion

In this paper, a weakly supervised metric learning framework is proposed for signer adap-
tation. By considering the clustering constraint and manifold constraint simultaneously, the
information from the unlabeled data are deeply investigated and the generic metric is adapted
to the new data distribution. The performance of signer-independent SLR can be improved
with the WSML framework applied to signer adaptation. Widely experiments on large vo-
cabulary datasets convincingly show that the proposed method outperforms state-of-the-art
methods.
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