Data-free Parameter Pruning for Deep Neural Networks

Suraj Srinivas
surajsrinivas@ssl.serc.iisc.in
R. Venkatesh Babu
venky@serc.iisc.in

Video Analytics Lab,
Supercomputer Education and Research Centre,
Indian Institute of Science

Deep Neural nets (NNs) with millions of parameters are at the heart of
many state-of-the-art computer vision systems today. However, recent
works have shown that much smaller models can achieve similar levels of
performance. In this work, we address the problem of pruning parameters
in a trained NN model. Instead of removing individual weights one at a
time as done in previous works, we remove one neuron at a time. We
show how similar neurons are redundant, and propose a systematic way
to remove them. Unlike previous works, our pruning method does not
require access to any training/validation data.

Wiring similar neurons The main principle that we use in this paper is
the fact that similar neurons are redundant, as shown in Figure 1. That is,
if we find such a similar weight pair anywhere in a neural network, one of
them can effectively be removed. Of course, while doing this we also need
to account for the weights in the next layer, as shown in Figure 1. This
observation also resonates with the well-known Hebbian principle, which
roughly states that neurons that fire together (W) = W,), wire together
(a1 = a1 +a2).

Wiring dis-similar neurons The above principle cannot be used as is in
real NNs, for one simple reason - weight-sets are seldom equal in value.
What do we do when ||W; — W, || = ||€12]] > 0 ? Let z, be the output
neuron when there are n hidden neurons. Let us consider two similar
weight sets W; and W; in z, and that we have chosen to remove W; to give
us z,,—1. Using some approximate analysis, we derive a simple rule to find
which weight-sets to remove. The final equation is

)

We aim to minimize the expected value of the squared difference be-
tween the output neurons. Using the expected error instead of the em-
pirical error is what makes it a data-free parameter pruning method. We
define the saliency of two weight-sets in (i, j) as 5; j = (a?) & j13, which
is exactly the term inside the min(-) in Equation 1. Intuitively, saliency
between two weight-sets is low when they have very similar values. Equa-
tion 1 tells us that we need to start removing lowest-saliency neuron to
minimize the expected squared difference.

We elucidate our procedure for neuron removal here:

min(E (2 — 20-1)%) < min; j(a5 ||&;,]3) E|1X]13

1. Compute the saliency s; ; for all possible values of (i, j). It can be
stored as a square matrix M, with dimension equal to the number
of neurons in the layer being considered.

2. Pick the minimum entry in the matrix. Let it’s indicies be (7', j).
Delete the j" neuron, and update a; < ay +a 2

3. Update M by removing the j column and row, and updating the
™ column (to account for the updated a;.)

Connections to other methods
pruning method called Optimal Brain Damage (OBD) [3]. In fact, our
method is equivalent to OBD if change in output activation produces pro-
portional change in test error. Unfortunately, this is almost never the case
for neural networks. Our method also weakly relates to Knowledge Distil-
lation (KD) [1]. The idea in KD was to minimize the empirical difference
in output neurons between a large “teacher” network and a smaller “stu-
dent” network. In our case the small student network is the pruned version
of the larger teacher network.

Determining number of neurons to prune One way to use our tech-
nique would be to keep removing neurons until the test accuracy starts
going below certain levels. However, this is quite laborious to do for large
networks with multiple layers. We ask whether it is possible to somehow

Our method relates to the popular weight-

W,
a
[J
X .// z — X
./ °
3
w, @ [J

Figure 1: A toy example showing the effect of equal weight-sets (W) =
W,). Weights of the same colour in the input layer constitute a weight-set.

determine the number of removals automatically. Specifically, we ask
whether the saliency values of pruned neurons can be used as a proxy for
test error. Figure 2 shows that it is indeed true. Unfortunately, we found
that this does not hold for large networks.

-

—Increase in Test error
_Saliency(si j)

w

~

Error(%), Saliency(s, l)

o

-

B

o

50 100 150 200 250 300 350 400 450
Number of neurons removed

Figure 2: Scaled appropriately, the saliency curve closely follows that of
increase in test error

Experiments

Toy dataset We show results on a toy dataset, comparing our method
to Optimal Brain Damage and Optimal Brain Surgery. We see that our
method performs better than the other two approaches, and is about 5000 x
faster than OBD, and 180000 faster than Optimal Brain Surgery.

MNIST-trained network We show results on an LeNet-like network
trained on MNIST dataset. We were able to remove about 85% of the
weights in the network, reducing the accuracy by only 1%.

AlexNet We try our method on AlexNet [2], which is a large-scale net-
work trained on Imagenet database. We were able to remove about 35% of
the total weights in the network, reducing the accuracy by 2.2%. In other
words, we were able to remove about 21 million weights in a network of
60 million weights, with little effect on accuracy.

References

[1] Geoffrey E Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In NIPS 2014 Deep Learning Work-
shop, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in Neural Information Processing Systems, pages 1097-1105, 2012.
Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and
Lawrence D Jackel. Optimal brain damage. In Advances in Neural
Information Processing Systems, volume 2, pages 598-605, 1989.

(2]

(3]

