Object localization in ImageNet by looking out of the window
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Figure 1: Connecting the appearance and window position spaces. A window
tight on the baseball (green star in the appearance space plot) and some larger
windows containing it (red circles in the appearance space). Black points in ap-
pearance space represent all other candidate windows. The appearance space
plots are actual datapoints, representing windows in 3-dimensional Associative
Embedding of SURF bag-of-words.

The ImageNet database [4] contains over 14 million images annotated by
the class label of the main object they contain. However, only a frac-
tion of them have bounding-box annotations (10%). Automatically anno-
tating object locations in ImageNet is a challenging problem, which has
recently drawn attention [6, 10]. These annotations could be used as train-
ing data for problems such as object class detection [3], tracking [7] and
pose estimation [1]. Traditionally, object localization is cast as an image
window scoring problem, where a scoring function is trained on images
with bounding-boxes and applied to ones without. The image is first de-
composed into candidate windows, typically by object proposal genera-
tion [8]. Each window is then scored by a classifier trained to discriminate
instances of the class from other windows [3, 5, 8, 9] or a regressor trained
to predict their overlap with the object [2, 10]. Highly scored windows are
finally deemed to contain the object. In this paradigm, the classifier looks
at one window at a time, making a decision based only on that window’s
appearance.

We believe there is more information in the collection of windows in
an image. By taking into account the appearance of all windows at the
same time and connecting it to their spatial relations in the image plane,
we could go beyond what can be done by looking at one window at a
time. Consider the baseball in fig. 1. For a traditional method to succeed,
the appearance classifier needs to score the window on the baseball higher
than the windows containing it. The container windows cannot help ex-
cept by scoring lower and be discarded. By considering one window at a
time with a classifier that only tries to predict whether it covers the object
tightly, one cannot do much more than that. The first key element of our
work is to predict richer spatial relations between each candidate window
and the object to be detected, including part and container relations. The
second key element is to employ these predictions to reason about rela-
tions between different windows. In this example, the container windows
are predicted to contain a smaller target object somewhere inside them,
and thereby actively help by reinforcing the score of the baseball window.
By considering the configuration of all the windows in appearance space
together we can reinforce its score.

In a nutshell, we propose to localize objects in ImageNet by scoring
each candidate window in the context of all other windows in the im-
age, taking into account their similarity in appearance space as well as
their spatial relations in the image plane. To represent spatial relations
of windows we propose a descriptor indicative of the part/container re-
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Figure 2: Results of our method (red) vs a prior method [10] (green). Notice,
how our method is able to detect small, off-center objects despite occlusion (pool
cue) or the object blending with its surroundings (tiger).

lationship of the two windows and of how well aligned they are. We
learn a windows appearance similarity kernel using the recent Associa-
tive Embedding technique [10]. We describe each window with a set of
hyper-features connecting the appearance similarity and spatial relations
of that window to all other windows in the same image. These hyper-
features are indicative of the object’s presence when the appearance of a
window alone is not enough (e.g. fig 1). These hyper-features are then
linearly combined into an overall scoring function. We devise a fast and
exact procedure to optimize our scoring function over all candidate win-
dows in a test image, and we learn its parameters using structured output
regression.

We evaluate our method on a subset of ImageNet containing 219
classes with more than 92000 images [6, 10]. The experiments show that
our method outperforms a recent approach for this task [10], an MKL-
SVM baseline [9] based on the same features, and the popular UVA ob-
ject detector [8]. Figure 2 presents some qualitive results of our method
compared to results of [10].
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