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Abstract

Digital cameras apply a non-linearity to the captured sensor values prior to quanti-
sation. This process is known as perceptual linearisation and ensures that the quanti-
sation rate is approximately proportional to human sensitivity. We propose an adaptive
in-camera non-linearity that ensures that the detail and contrast visible in the processed
image match closely with the perception of the original scene. The method has been
developed to emulate basic properties of the human visual system including contrast nor-
malisation and the efficient coding of natural images via adaptive processes. Our results
are validated visually and also quantitatively by two image quality metrics that model
human perception. The method works for still and moving images and has a very low
computational complexity, accordingly it can be implemented on any digital camera. It
can also be applied off-line to RAW images or high dynamic range (HDR) images. We
demonstrate the performance of the algorithm using images from digital cinema, mobile
phones and amateur photography.

1 Introduction
Image sensors in digital cameras capture values which are proportional to light intensity and
within a range of between 3-4 orders of magnitude. These values are typically passed through
a non-linearity prior to quantisation to a range of around 2 orders of magnitude. The purpose
of the non-linearity is to ensure that the quantisation rate is approximately proportional to
human sensitivity (see [4] and references therein). The problem of reducing the dynamic
range of an image while preserving the perceived detail, is known as tone mapping (see
[25] for a thorough study on the problem). Digital cameras generally do this by means
of gamma correction [23], which is a very simple, image independent approach, designed
to produce good results on average. Petit and Mantiuk [22] demonstrated that the simple
S-shaped response curve used by many cameras only works well for a subset of images.
In the literature there are a number of articles that propose adaptive, image dependant tone
mapping curves, often based on psychophysical models, for example, Stevens’ law is used in
[29], the Naka-Rushton formula in [21, 24], the Weber-Fechner law in [2, 18]. Approaches
related to the method presented in this paper include: Hwung et al. [15] who propose an
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adjustable non-linear transform of medium intensities and a linear transform of low and high
intensities; Finlayson et al. [12] who find the gamma exponent that maximises the entropy of
the image; Brunner et al. [6] determine upper and lower slopes of the tone curve based upon
the number of pixels in the low, mid and high region of the image histogram; Mantiuk et al.
[19] determine a piece-wise linear curve that minimises the contrast distortion with respect
to the original image; Drago et al. [9] apply a logarithmic curve using a base that varies from
2 to 10 depending on the pixel intensity; Larson et al. [18] apply a perceptually constrained
cumulative histogram. The current work is most closely related to Ferradans et al. [11] and
Cyriac et al. [8]. Both approaches apply two stages; The first stage achieves some degree
of histogram equalisation via the application of a point-wise non-linearity. The second stage
applies contrast enhancement. Ferradans et al. [11] compute a non-linearity that combines
properties of the Weber-Fechner and Naka-Rushton equations. In contrast, the approach
of Cyriac et al. [8] is based on new psychophysical research showing that subjects prefer
images that have a flat lightness histogram [16], where lightness is the non-linear perception
of luminance. Accordingly, Cyriac et al. [8] find the gamma exponent that best flattens the
lightness histogram.

This paper presents a method of in-camera image processing that ensures that images
look natural and that the detail and contrast visible in the processed image closely match
those that can be seen by an observer present at the original scene. Our algorithm adapts to
each scene. The adaptions are based on research into natural image statistics, the efficient
representation of natural images in the human visual system and contrast normalisation.
We validate the model with two image quality metrics that incorporate a model of human
vision. Finally, we demonstrate the performance of the model on moving and still images.
The model has low computational complexity and thus can potentially operate on camera
hardware. The method can also be applied to RAW and HDR images.

Figure 1: Block diagram of the proposed method.
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2 Proposed method
The proposed method finds, for a given image, a transform which ensures that the output
values are more evenly distributed over the available range. The transformations applied to
the image are based on natural image statistics, psychophysical data and neurophysiological
models. Figure 1 shows the block diagram of our proposed method. We have followed the
same approach as Ferradans et al. in [11] and our method consists of two main stages, a
global one followed by a local contrast enhancement one:

1. Using natural image statistics, a function γ is estimated using some key features of the
cumulative histogram of the input intensity image. This function γ is used to perform
a transform of the intensity values in a manner that complies with users’ preference
data as obtained through psychophysical tests [16].

2. The output of the previous stage is passed through an additional contrast normalisation
procedure that replicates efficient coding behaviour that occurs both in the retina and
cortical areas of the human visual system.

2.1 Natural image statistics and histogram equalisation
In the vision science community the prevailing view is that the visual system transforms
the input image to ensure an efficient representation (see [20] and references therein). The
human visual system has evolved so as to adapt best to the statistics of natural images.
Several works on natural image statistics (e.g. [14, 26]) report that the average shape of the
luminance histogram for a natural image is triangular in log-log coordinates: it increases
linearly up to a peak, obtained for an image intensity value of M (related to the average of
the intensity), and then decreases linearly with a slightly different slope, see Figure 2. This
implies that the cumulative histogram, being simply the integral of the histogram, will also
be a piece-wise linear function in log-log coordinates, increasing linearly with some slope
γL until the intensity value M, then increasing linearly with a different slope γH . In our
method we use this insight from the above-mentioned results on natural image statistics to
estimate, for the input image, the particular values of M, γL and γH that best fit the specific
histogram of the image. That is, instead of using fixed values of M, γL and γH that may

Figure 2: Average histogram of natural scenes, in log-log coordinates. From [14].
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adequately represent the average statistics of natural images, we tailor these values to the
particular image at hand, obtaining an image-dependent and smooth sigmoid curve γ(I) such
that γ(I)' γL for small intensities, and γ(I)' γH for large intensities. This approach is also
supported by neurophysiological evidence [28] showing that the retina adapts to the light
intensity distribution over the image.

Natural scenes tend to have a low-key luminance distribution. This means that low lu-
minance values occur much more frequently than high luminance values. This is especially
true for HDR images [16] such as a picture taken directly into sunlight. The results is that
many images are dominated by dark, low contrast regions when presented linearly on lower
dynamic range media, such as commercial and consumer displays (see Figure 3, left). This
problem can be mitigated by a process called histogram equalisation that flattens the lumi-
nance distribution of an image. This technique is well established and is effective at increas-
ing the contrast, and in turn, the detail visible in an image. Complete histogram equalisation
is achieved by computing the cumulative histogram of an image and applying this as a point
wise non-linearity as follows, where H is the normalised cumulative histogram, I the original
normalised image and x a pixel location:

Ieq(x) = H(I(x)). (1)

Although complete histogram equalisation is highly effective at increasing image contrast, it
can lead to very sharp changes in contrast and frequently produces unnatural looking images
(see Figure 3, middle). Thus some form of constrained histogram equalisation is necessary
(see Figure 3, right). One approach is to apply a smooth function that approximates the
cumulative histogram. In this work we apply a smooth function that is derived from the
statistics of natural scenes. As we demonstrate above, for natural images the average cumu-
lative histogram can be modelled in log-log coordinates as a piecewise linear function with
two different slopes; therefore, in linear-linear coordinates the cumulative histogram has the
form

H(I) = Iγ(I), (2)

where γ(I) is the function described in the previous section. From Equations (1) and (2) we
introduce the first stage of our model, which produces constrained histogram equalisation:

Ieq(x) = (I(x))γ(I(x)). (3)

Recent research has demonstrated that subjects display a preference for images with a
flat lightness distribution [16], where lightness is the non-linear perception of world lumi-
nance values. We model the visual pipeline from capture to perception as consisting of two

Figure 3: Comparison of complete histogram equalisation and proposed method. From left
to right: linearly scaled HDR image, result of complete histogram equalisation of the HDR
image, result of constrained histogram equalisation (proposed first stage) applied on the HDR
image.
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main nonlinearities. The first is from image capture (I) to presentation on a display (Idisp).
This non-linearity is known as the system gamma, a power law that can be modelled as the
product of the camera nonlinearity (encoding gamma) and the display nonlinearity (decoding
gamma):

Idisp = Iγsys , γsys = γencγdec. (4)

The second nonlinear function is the psychological relationship Ψ between real world lumi-
nance (e.g. as displayed on a monitor) and perceived luminance L:

L = Ψ(Idisp). (5)

In this work we make the simplifying assumption that the encoding gamma is the inverse
of the decoding gamma, therefore the initial image I can be said to be proportional to the
displayed image Idisp. In that case we can see the first stage of our model, Eq. (3), as an
approximation to the perceptual function in Eq. (5).

2.2 Contrast normalisation
In the neuroscience literature there is abundant neurophysiological evidence (see [5, 7] and
references therein) that the visual system is performing an operation called contrast normal-
isation, in which the contrast (the difference between light intensity and its mean value) is
divided by a factor depending on the standard deviation of the light intensity. This re-scaling
already occurs at the retina and optimises information transmission and coding efficiency
[5, 17]. Given that contrast normalisation is a key element of the human visual system we
have incorporated it to our method with the following second and final stage:

O(x) = µ(x)+(Ieq(x)−µ(x))∗ k/σ , (6)

where x is a pixel, Ieq(x) is the value at pixel x computed at the previous stage of our method,
µ(x) is the local mean of Ieq, k is a constant, σ is the standard deviation of Ieq, and O(x) is
the final output value of our method for pixel x.

3 Implementation
In this section we will present the implementation details. Our method consists of the two
stages described by Eqs. (3) and (6). Both equations are applied separately to each of the
red, green and blue colour channels, which have previously been normalised into the range
[0,1] and where values above the 99 percentile have been clipped.

The γ(I) curve in Eq. (3) is defined by estimating its parameters (γL, γH and M) from
the cumulative histogram of the luminance channel in log-log coordinates, as illustrated in
Figure 4 and explained in what follows. The luminance channel is the Y-channel of the input
image when converted into XYZ colour space. Our estimate of M will be the average of the
intermediate values Lm and LM on the horizontal axis (log luminance), which respectively
correspond to the values of 1 and 90% in the vertical axis (log cumulative histogram). Next
we define M+ as the value above M at one third the difference between LM and M.

The values of γL and γH are estimated with respect to M+: the slope of the line from the
value at M+ to the end of the curve gives γH , and the slope of the line that goes from the
value at M+ to the point on the curve that is 1 unit lower than M+ along the vertical axis

Citation
Citation
{Brenner, Bialek, and Vanprotect unhbox voidb@x penalty @M  {}Steveninck} 2000

Citation
Citation
{Carandini and Heeger} 2012

Citation
Citation
{Brenner, Bialek, and Vanprotect unhbox voidb@x penalty @M  {}Steveninck} 2000

Citation
Citation
{Kastner and Baccus} 2014



6 CYRIAC, KANE, BERTALMÍO: PERCEPTUAL DR FOR IN-CAMERA IMAGE PROCESSING

−14 −12 −10 −8 −6 −4 −2 0
0

2

4

6

8

10

12

log(L)
lo

g(
H

)

L

γ

m LMM

M+

L

γH

Figure 4: Example of a cumulative histogram for a single natural image (in log-log axes) and
our estimated parameters γL, γH and M.

will be our estimate for γL. Having the three parameters γL, γH and M we can now define the
function γ(I) as follows:

γ(I) = γH +(γL− γH)(1−
In

In +Mn
lin
), (7)

where Mlin is simply the exponential of M (since I is in linear coordinates but M was com-
puted on log luminance values) and n is a fixed exponent that regulates the steepness of the
curve (in practice we set n = γL). The function γ(I) thus defined goes from γL to γH with a
smooth transition at Mlin, as it was argued in Section 2.1 that it should behave in order for
Eq. (3) to perform histogram equalisation of natural images.

For the second stage, Eq. 6, we have to specify the value of k and the way the local mean
µ(x) is computed. The value µ(x) is obtained by convolving Ieq with a kernel W which is
a linear combination of two Gaussian kernels, one with small standard deviation (σ = 5)
which is given a weight of 0.9 and the other with a larger standard deviation (σ = 25) which
is given a weight of 0.1. The constant k controls the level of contrast of the image, and a
value of k = 0.33 produces results with good contrast and a natural appearance.

For video sequences, applying the above method to each frame separately may result in
flickering artefacts due to the possibility of a sudden change in the tone curve from one frame
to the next. Therefore for video we adopt a two pass approach. In the first pass, we estimate
γL, γH and M for each frame separately, then we apply a temporal low pass filter to these
values. In the second pass, we apply our method (Eqs. (3) and (6)) with the new parameters.

As a final comment, we note that all the operations described above (computation of
histogram, estimation of parameters, computation of mean and standard deviation, etc.) are
of low computational complexity and therefore the proposed method is a very good candidate
for real-time applications.

4 Experiments and comparisons
We note that all the results reported in this section use the same procedure of automatic
parameter estimation described above. One potential application of our method is for the
in-camera automated processing and compression of images. To illustrate the potential of
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(a) (b) (c)

(d) (e) (f)
Figure 5: First row: original JPEG images as recorded by the camera, with the exception of
image (b) which is generated by applying a S-shaped curve to the LogC data of the RAW
image. Second row: results of applying our method to the corresponding RAW images.
Camera models: left column, Nikon D3100 consumer photography camera; middle column,
ARRI Alexa digital cinema camera[1]; right column, Nexus 5 smartphone camera.

this method we compare the regular JPEG output versus the result of applying our method
to the corresponding RAW image. The results are illustrated with images from consumer,
smartphone and cinema cameras and the results are shown in Figure 5. Note the natural
appearance, enhanced contrast and absence of halos, spurious colours or visual artefacts of
any kind.

Figure 6 shows how our method can also be used offline as a tone mapping operator,
applied to HDR images. Again, no visual artefacts can be observed.

Next, we perform a quantitative evaluation of our method. We use the Fairchild dataset
[10] of HDR images and compare our algorithm with six state-of-the-art tone mapping op-
erators, using the metrics DRIM [3] and TMQI [30]. The results are shown in Table 1. The
values for DRIM are global error scores, thus the lower this number, the better the method is,
whereas the opposite is the case for TMQI: the values for TMQI are estimates of structural
fidelity (S) and naturalness (N) of a tone-mapped image with respect to the original HDR
image, with an overall quality (Q) being a weighted average of S and N, thus the higher
the values, the better the method is. We can see from Table 1 that, according to DRIM, the
amount of distortions produced by our approach matches that of Mantiuk et al. [19] and is
significantly less than the error introduced by all other tested methods. In terms of TMQI,
our method ranks as the best in terms of overall quality (Q), and matches to Mantiuk et al.
[19] for structural fidelity (S). It is worth noting that our results have a very high naturalness
(N) index. The evaluation by DRIM is illustrated in Figure 7. The overlaid colours on the
grayscale images represent the error introduced by the tone mapping procedure: green por-
trays a loss of contrast, red an amplification of contrast and blue, inversions of contrast. The
saturation of the colour corresponds to the error magnitude. We can see in the two examples
that our method produces significantly less error in general and, in particular, a reduced loss
of contrast.

Finally, in Figure 8 we compare our method with state-of-the-art tone mapping operators
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Figure 6: Results of our method applied to HDR images from the Fairchild dataset (top row)
[10] and to images from the ARRI dataset (bottom row)[13].

Figure 7: Comparison of our method with state-of-the-art tone mapping operators. The first
and third rows show the results of various algorithms and the second and fourth rows show
the corresponding error maps computed with DRIM [3]. From left to right: the proposed
method, Mantiuk et al. [19], Ferradans et al. [11], Reinhard et al. [24] and Drago et al. [9].
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Images TMO DRIM[3] TMQI[30]
Q S N

Average of
41 images for DRIM
106 images for TMQI

Only 1st stage, Eq. (3) 0.49 0.90 0.91 0.55
Proposed method 0.46 0.91 0.92 0.58
Mantiuk et al. [19] 0.46 0.90 0.92 0.51
Ferradans et al. [11] 0.50 0.89 0.89 0.50
Drago et al. [9] 0.54 0.87 0.87 0.42
Reinhard et al. [24] 0.51 0.87 0.88 0.44
Singnoo et al. [27] 0.54 0.89 0.92 0.48
Cyriac et al. [8] 0.48 0.89 0.92 0.51

Table 1: Quantitative evaluation using the Fairchild dataset [10].

Figure 8: Comparison of our method with state-of-the-art tone mapping operators on two
HDR video sequences from the ARRI dataset [13]. Top row: “smith_hammering”. Bottom
row: “fishing_longshot”. From left to right, the proposed method, Mantiuk et al. [19],
Ferradans et al. [11], Reinhard et al. [24], and Drago et al. [9].

using two HDR video sequences from the ARRI dataset [13]. We can see that our algorithm
produces results that are natural looking and with very little noise1. The video displays no
visible flicker nor any sort of spatiotemporal artefacts.

5 Conclusion
We have presented a method for in-camera non-linear mapping that adapts to the particular-
ities of each image and produces results that look natural even for challenging scenes. It is
based on basic properties of the human visual system, works for still and moving images and
has very low computational complexity. The experiments and comparisons show that the re-
sults obtained with our method, for a variety of camera types, are visually and quantitatively
very good, without halos, flicker or spatiotemporal artefacts of any kind. We are currently
improving the automated parameter selection.
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1This casts some doubts on the applicability of the TMQI metric, since the naturalness score N that we get for
these images is much smaller than that of Mantiuk et al. [19]
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