Multi-scale Graph-based Guided Filter for De-noising Cryo-Electron Tomographic Data
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Figure 1: MG?F Framework: A noisy image slice from the 3D reconstructed
tomogram is fed to the algorithm, where the graph is built on a selected scale space
image (i.e. coarse grid) acting as a guidance for the regularized graph spectral filter.
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1 Introduction

Cryo-electron tomography (CET) is a powerful imaging technique in bi-
ological sciences which bridges the gap between the molecular and the
cellular structural biology [5], giving a better understanding of protein in-
teractions and thus better drug delivery strategies. In principle, similar
to Computed Tomography (CT) in Medical Imaging, the acquired pro-
jections at limited angles are reconstructed back to create the 3D object,
however, these projections are extremely noisy and have a low contrast.
Therefore, many conventional filters failed in smoothing the background
while preserving edges and interesting objects, which makes developing
a denoising algorithm is very desirable for better interpretation.

‘We show in this paper how our methodology meets the hypothesis: a)
By using a multi-scale pyramid for guidance we are able to detect mean-
ingful scales and use them for guidance without oversmoothing fine scale
structures. b) Using a patch-based approach, we can take advantage of
redundant structures in the whole image rather than using a pre-defined
spatial window for averaging similar pixels or patches. This way, we can
preserve the local and global consistencies. ¢) By deriving explicit solu-
tion formulas for computing the intermediate filtering results we obtain
an efficient algorithm.

2 Methodology

Given a noisy image I, we collect N overlapping patches, which can
be seen as data points v = {v{,v,..., vy} € R"™¥ lying on a manifold
M embedded in R" space such that v = Ely, where E is an operator
collecting patches and vectorize it, cf. Figurel. The relation between
the data points can be represented by a k-NN connected, undirected, and
weighted graph G = {v, €, ®}, where € is the set of edges, and @ is the
set of edge weights.

These weights are assigned using a heat kernel, however, the distance
between these patches is computed on a certain structure scale o where
the noise manifest itself and can be used as a guidance for the graph spec-
tral filter A(4;), which is computed based on the eigenvalue decomposi-
tion of the normalized Laplacian matrix Lg, := UAUT . This way, we can
formulate the denoising problem as follows:
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where & > 0 is the regularization parameter and Sg, (I) = Tr (VLg v7)
is the graph guidance regularization term.
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Figure 2: Photographic Image: Results of different algorithms on Lena
image(128X128, SNR=7) along with a tabulated comparison to the proposed
MG?F filter.

The closed form solution can be written as

N
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where ET denotes the reshaping process of the previously vectorised patches,
and the spectral response of the filter 2(A;) = 1/(1+ atA;) controls the fre-
quency decay and thus the degree of smoothness. A connection to classi-
cal filters and the sensitivity analysis are discussed in details.

@

3 Results

To give a good illustrative example, we run the algorithm on Lena image,
which corrupted by an (i.i.d) Gaussian noise resulting in SNR of 7. Dif-
ferent algorithms are applied on this image, results are shown in Figure 2
for the cropped images. It is clear that our method gives an outperforming
PSNR indicating for better contrast. A simulated and real CET data exper-
iments in 2D and 3D are presented in the paper. Using the gold-standard
metrics, we show that our denoising algorithm significantly outperforms
the state-of-the-art methods such as NAD, NLM and RGF in terms of
noise removal and structure preservation.
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