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Abstract

The quality of learning-based pose estimation still heavily relies on manual training
data annotations. However, the manual labeling of large datasets is costly and frequently
limited to a few coarse viewpoint annotations of varying accuracy. In this work, we pro-
pose to refine such coarse pose annotations with a domain adaptation approach, where the
source domain consists of fine-grained pose annotations generated from synthetic com-
puter graphics models, and the target domain of coarse manual pose annotations of a real
dataset. Our domain adaptation step computes a linear map which aligns corresponding
samples from the two domains and allows for the refinement of the manual pose labels
using the transformed synthetic ones. Experiments show that we significantly improve
pose estimation on several state-of-the-art car datasets.

1 Introduction
Although pose estimation of object classes is an important task in scene understanding, most
methods consider only the estimation of coarse viewpoints, namely front, back, left and right
view. The main reason is the lack of training data of images with continuous or fine-grained
viewpoint annotations. As illustrated in Figure 1, humans perform poorly for estimating the
viewpoint of an object accurately, but they perfectly estimate the four coarse viewpoints.
An alternative is the use of synthetic data, which has been successfully used to augment
real training images for object detectors [16, 22, 27, 29, 30]. In this case, however, the real
data can be annotated by humans and the synthetic data only increases the variation in the
training data, but does not refine the labels of the training data. If only synthetic data is used,
the viewpoint annotations are even continuous [18], but the training data lacks the realism of
real images, which results in a loss in accuracy. The limitation of synthetic data is the cost
of acquiring detailed 3D models of object classes and render them in various environments.
Examples of our synthetic images are shown in Figure 2(a).

In this work, we propose to leverage human annotators and synthetic data to avoid the fine
annotation of images by annotators, which is time-consuming and erroneous, and to avoid
the synthesis of a realistic dataset that captures the variations of real images, which is time
and memory consuming. To this end, we ask humans to annotate only four coarse views,
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Figure 1: Humans are perfect for annotating coarse viewpoints of objects in real images, but
fail to estimate pose accurately at a fine level. 3D graphic models can be used to synthesize
data at very accurate fine angles, but it is time-consuming to model all appearance variations
present in real images. We therefore propose to leverage the abilities of humans of estimating
coarse viewpoints and the pose accuracy of synthetic data.

(a) Synthetic samples

45°

135°225°

315°

back

right

front

left

(b) 4-Coarse views

Source
(synthetic)

Target
(real)

feature dimension 1

feature dim
ension

 2

(c) 2D representation of different datasets

Figure 2: (a) Some examples of our synthetic images, whose rendered cars implicitly contain
fine annotations. (b) The four views available for real images. (c) Synthetic and real images
with the same annotated viewpoint lie in different domains within the feature space.

sketched in Figure 2(b), and we propose an approach that refines the labels using synthetic
data. Since synthetic data and real images are different domains as illustrated in Figure 2(c),
we use a domain adaptation approach for the refinement. Our experiments show that standard
domain adaptation approaches like [7, 11] are not sufficient for label refinement. Instead, we
propose an approach that exploits the coarse labels of the real training images.

In the experiments on four car datasets for viewpoint estimation, we show that our ap-
proach with domain adaptation performs better than using only synthetic data and it out-
performs other domain adaptation methods. For some datasets, the achieved accuracy is
even comparable to the accuracy of a viewpoint estimator trained on real images with fine
viewpoint annotations.

2 Related Work
Domain Adaptation Domain adaptation addresses the problem when the training and test
data are at least partially from different domains. To this end, either a transformation of
the domains is estimated before the training of a classifier [2, 7, 9] or the so-called source
domain is used to regularize the learning of a classifier on the target domain [12, 20]. A
popular choice in this context are support vector machines [1, 4, 11, 32, 33]. The approaches
that estimate the transformations without a classifier like the geodesic flow kernel [7] learn
mappings from the source and target domain into a joint, low-dimensional space. This can
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be done in an unsupervised manner where the target domain is unlabeled, or in a supervised
or semi-supervised setting where the data from the target domain contains a few labeled
samples. In contrast to these works, we use domain adaptation in a weakly supervised setting
where only coarse labels are available for at least some of the images of the target domain.

During the last years, the main focus has been on the optimization process for domain
adaptation, where additional constraints for the optimization have been proposed [1, 4, 11,
23, 32]. For instance, orthogonality constraints have been suggested for the transformation
matrix [2, 12]. Other approaches paid more attention to relaxation techniques to make the
optimization solvable [7, 32]. While these methods assume that the source and target do-
mains are known, [8] calculates latent domains from the given annotated datasets.

Synthetic Data The use of 3D models to estimate the viewpoint of object instances has
been addressed in several works [15, 18, 21, 25, 26, 34]. In these works, 3D models are used
to learn the spatial 3D relations of parts or features. In contrast to these works, we use 3D
models to synthesize training images with accurate viewpoint annotations.

Synthetic data has also been used in the context of pedestrian detection [16, 22]. While
[16] uses only synthetic data for training, [22] uses it in addition to real images of pedes-
trians. Since the synthetic and the real images have the same labels, both training sets are
combined by training a classifier for each dataset and combining them by another classifier
on top of them. Recently, datasets consisting of images annotated with 3D models have been
proposed [17, 31]. Considering that the manual annotation is very time consuming, we do
not assume that the real images are accurately annotated. Instead, we use the synthetic data
to refine the coarsely labeled real images. The discrepancy between real and synthetic im-
ages was addressed in [27, 29, 30]. In [29, 30], an active learning approach is proposed. To
this end, a pedestrian classifier is trained on the synthetic data and applied to the real training
images. The misclassified examples in the real images are then manually selected and used
as additional training images. In [27] whitening is applied to the synthetic images.

Instead of rendering 3D data, synthetic data can also be generated by defining a para-
metric model for synthesizing geometric shapes from a particular object class, used in both
recognition and reconstruction, as proposed by [10].

3 Domain Adaptation for Viewpoint Refinement
Since synthetic data and real images belong to different domains as illustrated in Figure 2(c),
we adapt the domain of the synthetic data to the real data. Our approach clusters the source
(synthetic) and target (real) domains, and establishes correspondences between the clusters.
The correspondences are then used to learn a mapping from the source domain to the target
domain. The viewpoint annotations of the real images are then refined with pose classifiers,
i.e., linear support vector machines (SVM), trained on the transformed synthetic data.

The learning of the mapping from the source to the target domain is discussed in Sec-
tion 3.1. The establishment of correspondences between clusters of both domains is dis-
cussed in Section 3.2. Finally, Section 3.3 discusses the label refinement.

3.1 Domain Adaptation
To map the source data to the target domain, we have to learn a mapping from S ∈ RD

to T ∈ RD, where D denotes the dimensionality of the features. For label refinement, the
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Figure 3: Each cluster in the target domain is assigned to a source cluster that belongs to the
same coarse viewpoint. In this example, for an 8-view refinement: Vi = 2 and Ki = 4.

dimensionality of the source and the target domain is the same. We consider a linear trans-
formation, which is represented by a matrix W ∈ RD×D, i.e., t =Ws.

Let S = {s1, ...,sM} and T = {t1, ..., tN} denote the training samples of the source and
target domains, respectively. M and N are the total amount of samples of each domain
and we can assume that M ≥ N, since we can always generate more synthetic data than
annotated real images. We first assume that for a subset of the target elements tk we have
already established a corresponding element in the source domain. The establishment of the
correspondences C = {c1, ...,cK} with (sck , tk) and K ≤ N will be explained in Section 3.2.

Given the correspondences, W can be learned by minimizing the objective

f (W ) =
1
2

K

∑
k=1
||Wsck − tk||22, (1)

which can be expressed in matrix form:

f (W ) =
1
2
||WPS−PT ||2F . (2)

The matrices PS and PT ∈ RDxK represent all assignments between source and target
elements, where the columns denote the actual correspondences. The objective is equivalent
to the spectral norm of WPS−PT and can be solved by taking the largest singular value.

The objective, however, can be faster optimized by non-linear optimization. To this end,
the derivatives of (2) are calculated by

∂ f (W )

∂W
=W (PSPT

S )−PT PT
S . (3)

In our implementation, we use the local gradient-based optimization method of moving
asymptotes [28], which is part of the NLOPT package [13].

3.2 Source-Target Correspondences
In order to minimize (1), we first have to establish correspondences between the source and
the target data. To this end, we cluster the data in both domains. For the synthetic data, we
use the known fine-grained poses where each pose can be associated with one of the four
coarse viewpoints i = {front,back, left, right}, i.e., V = ∑i Vi, where V is the total number of
fine-grained poses. For the target domain, we only have the coarse viewpoints and therefore
cluster the Ni training samples of one viewpoint further by K-Means, where the number of
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clusters for each coarse viewpoint is given by Ki, i.e., K = ∑i Ki and Vi ≤ Ki ≤ Ni. For the
clustering, we represent each image by a HOG feature vector and append the aspect ratio of
the bounding box surrounding the object.

As illustrated in Figure 3, we establish correspondences between the clusters in the
source and target domains, separately for each coarse viewpoint. To this end, we repre-
sent each cluster by its centroid. The sets of centroids are denoted by Ŝi = {ŝi

1, ..., ŝ
i
Vi
} and

T̂ i = {t̂ i
1, ..., t̂

i
Ki
}. The correspondences are then established by solving a bipartite matching

problem:

argmin
evk

Vi

∑
v=1

Ki

∑
k=1

evk
∥∥ŝi

v− t̂ i
k

∥∥2
2

subject to ∑
v

evk = 1 ∀k , ∑
k

evk = av ∀v and evk ∈ {0,1} ∀v,k .
(4)

It assigns to each cluster in the target domain a unique cluster in the source domain. Since
there can be more clusters in the target domain than in the source domain, each source is
associated to av =

Ki
Vi

target clusters. If Ki is not a multiple of Vi, i.e., aVi < Ki < (a+1)Vi,
we set av = a+ 1 for the first Ki− aVi source clusters and av = a otherwise. We use the
Hungarian algorithm [14] to solve the problem and for any cluster pair with evk = 1, we
obtain a correspondence c. The correspondences from all coarse views are then used to
estimate the transformation W in (1).

3.3 Viewpoint Refinement and Estimation
The last step in our pipeline is the viewpoint refinement of the real training images. This
is seen as a classification problem where we train on the transformed synthetic samples a
linear SVM for each of the fine viewpoints v = {1, ...,V}. Then, we apply the linear SVMs
corresponding to the coarse viewpoint i of the real image and assign the fine pose with the
highest scoring function:

f (x, i) = argmax
v={1,...,Vi}

wT
v x+bv, (5)

where wv and bv are the weights and bias of the linear SVM for the fine viewpoint v.
For pose estimation on real test images, we also use linear SVMs in a one-vs-all classi-

fication procedure. For each fine viewpoint, we train an SVM using the real training images
with refined pose labels and the synthetic training images, which have been transformed by
domain adaptation, together.

4 Experiments
We evaluate our algorithm on 4 well-known car datasets with annotated poses. The 3D Obj.
Categorization [24] dataset provides 10 image sets of cars in 8 different angles (every 45
degrees), permitting a refinement from 4 to 8 fine viewpoints. There are 2 elevations and
3 distances for each view, giving 48 images per car. We take 7 sets for training and 3 for
testing. The EPFL [19] dataset contains sequences of 20 cars as they rotate by 360 degrees,
where one image is taken every 3-4 degrees. These fine-grained poses allow us to test the
refinement for 8, 16 and 32 fine viewpoints. We take the first 10 car sequences as training
(1179 images) and the last 10 as test data (1120 images). All cars in these two datasets are in
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(a) EPFL dataset
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(b) KITTI dataset
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Figure 4: Impact of the number of target clusters K for viewpoint refinement.

a fixed location with distinctive details. Therefore, we also evaluate our method on the more
challenging KITTI [6] benchmark, where images are recorded while driving along streets and
roads. Due to the lack of bounding box annotations in the test data, we perform a 2-fold cross
validation on the fully visible cars of the training set, containing 7481 images with 17463
cars, 7811 of which are non-occluded. The last is the PASCAL3D [31] dataset that enriches
the PASCAL VOC 2012 [5] categories with 3D annotations and provides a car training set
(529 images, 364 non-occluded) and a validation set (477 images, 319 non-occluded).

The setup for the experiments is as follows. We automatically generate synthetic data of
15 textured car models with random background images taken from the KITTI dataset [6].
A background image is discarded when the rendered car model overlaps with a car in the
image. These images, which point towards the car’s driving direction, allow for synthetic
car placements in the center of the image with an acceptable level of coherence without
any human supervision throughout the process. The synthetic images are then obtained by
rotating the car models every 5 degrees (72 azimuth angles), using 3 levels of elevation (0,
15 and 25 degrees) and 2 different distances. This results in 6480 fully annotated synthetic
samples as shown in Figure 2(a). The pose labels are quantized to their closest angle of the
V fine poses. For the real training images, we use the bounding boxes and convert the given
viewpoints into the four coarse views for the refinement task, that is: f ront = (315◦, ...,45◦),
right = [45◦, ...,135◦], back = (135◦, ...,225◦) and le f t = [225◦, ...,315◦]. For the real test
images we use the given bounding boxes if the images are not already cropped. Neither
coarse nor fine viewpoints are used for the test images. As training and testing, we rescale
the bounding boxes to 128×128 pixels and extract HOG descriptors [3] with 8 bins, forming
feature vectors of 2976 dimensions. We additionally normalize the synthetic and the real
feature vectors separately such that the mean is zero and the standard deviation one.

4.1 Viewpoint Refinement

We first evaluate the accuracy of our approach for pose refinement on the real training im-
ages. To this end, we use the coarse labels of the real training images and refine the view-
points as described in Section 3.3. We then evaluate the accuracy of the refined labels on the
real training images in conjunction with the transformed synthetic samples.

Impact of number of target clusters. As described in Section 3.2, we cluster each coarse
view by K-Means. We therefore evaluate the impact of the number of target clusters K on
the viewpoint refinement. The results for the different datasets and different numbers of the
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(a) EPFL dataset
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(c) PASCAL 3D dataset

Figure 5: Impact of the number of target samples Ni per coarse view for the refinement.

fine viewpoints used for evaluation are shown in Figure 4. As baseline, we use linear SVMs
trained on the synthetic data without domain adaptation. The accuracy tends to stabilize
when the number of clusters is sufficiently large. The finer the viewpoints are the more
clusters are also needed.

Impact of number of target samples. Although annotating real images by coarse view-
points is easy to do, it also takes time. We therefore evaluate the impact of the number of
coarsely labeled target samples N. To avoid any clustering artifacts, we set Ki = Ni, i.e., each
target sample itself is a cluster. We also keep the numbers of the real images Ni for each of
the four viewpoints equal while increasing N. The results in Figure 5 show that already 50-
75 annotated samples per coarse view give a boost in performance compared to the baseline.
This means that very little time is actually required for the annotation task.

Accuracy of the viewpoint refinement We finally compare the refinement accuracy of
our method with different popular domain adaptation techniques [7, 11, 27]. These tech-
niques follow the same strategy of transforming domains. Thus, we also train and apply our
linear SVMs on the transformed domains for label refinement as described in Section 3.3.
As baseline, we use the linear SVMs trained on the synthetic data without domain adap-
tation. In [27], a whitening transformation is applied to both domains. The geodesic flow
kernel (GFK) [7] is an unsupervised domain adaptation method that maps both domains to
a common subspace in a Grassmannian manifold. The approach can also be used for super-
vised domain adaptation, but it did not improve the results in our experiments. We therefore
report the results for the unsupervised approach. The maximum margin domain transform
(MMDT) [11] is a supervised domain adaptation approach that computes the linear SVMs
and the domain transformation in an iterative process where in each iteration either the SVMs
or the transformation are estimated. We achieved the best performance for this approach
when using the coarse viewpoint labels for the synthetic and the real images.

For our method, we report the refinement accuracy for four different clustering settings.
For the first three, we set V equal to the number of views for fine-grained pose estimation as
in the previous experiments. We report numbers for K = V , K = 100 and K = N, i.e., each
real training sample is one cluster. For the first two settings we report the mean accuracy
and its standard deviation over 10 runs since K-Means clustering contains slight variations
depending on its initialization. The results for the different datasets are shown in Table 1.
While K = N performs best for three out of four datasets, K = 100 performs best for the
KITTI dataset. The KITTI dataset contains the largest number of real training images and
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3DObj [24] EPFL [19] KITTI [6] PASCAL3D [31]
8views 8views 16views 32views 8views 16views 8views 16views

w/o Dom. Adapt. 97.62 88.65 76.63 65.14 80.04 65.61 83.09 61.36

Whitening 99.11 87.98 79.64 67.08 78.03 62.23 84.34 66.36
GFK [7] 97.62 88.92 76.58 65.31 80.07 65.42 84.97 59.67

MMDT [11] 97.92 88.25 77.02 64.68 78.94 62.37 84.80 60.21

V=views, K=V 98.57
(0.53)

90.41
(1.65)

77.32
(2.01)

64.19
(1.86)

77.15
(1.30)

64.56
(1.67)

84.55
(1.94)

58.89
(3.01)

V=views, K=100 99.11
(0.36)

91.57
(0.47)

79.62
(0.65)

67.40
(1.18)

80.32
(1.41)

67.37
(1.47)

86.53
(1.83)

62.67
(1.82)

V=views, K=N 99.70 92.00 81.82 70.41 78.78 67.05 88.79 63.33
V=M, K=N 92.86 85.69 76.69 65.49 75.70 62.92 80.46 58.77

Table 1: Accuracy of the coarse-to-fine viewpoint refinement for different domain adaptation
techniques. For the methods with K-Means clustering, the mean and standard deviation
(brackets) over 10 runs are provided.

reducing the samples by clustering is beneficial in this case. In addition, this dataset has
the specific feature that it is dominated by 4 out of 16 viewpoints: front and back views for
vehicles in the same road and side views for the crossing ones. Therefore, fine viewpoints
from the synthetic dataset yield only minor improvements. We also evaluated the accuracy
when V is also set to the number of synthetic samples M, i.e., each synthetic image is a
cluster. In this case, the accuracy drops significantly for all datasets. This shows that the
synthetic data needs to be quantized according to the fine-grained views.

Table 1 also reports the numbers for the other domain adaptation methods. In both set-
tings, K = 100 or K = N, our approach outperforms the other methods for pose refine-
ment. Only for the 16 views on the PASCAL3D dataset, whitening performs better. Our
approach with K = 100 also performs better than the baseline without domain adaptation
for all datasets whereas the approaches [7] and [11] are in few cases even slightly below the
baseline.

4.2 Viewpoint Estimation
We finally evaluate the accuracy of the pose estimation on the real test images. To this
end, we train the viewpoint estimator described in Section 3.3 on the synthetic data, the real
training data with refined viewpoint labels or on both datasets. For the refinement, we use our
approach with K = N (with DA) and compare it to the refinement without domain adaptation
(w/o DA), i.e., using only the linear SVMs as described in Section 3.3. We also evaluate the
accuracy when the real images are refined directly by the established correspondences (real
corr), as described in Section 3.2, but without estimating the transformation W . We report
the results in Table 2 where we also compare the accuracy of the pose estimator when the
fine ground-truth viewpoint annotations of the real training images (gt) are used for training.
This serves as an expected upper bound of the accuracy in comparison to the other settings,
where only the four coarse viewpoint labels of the real training images are used.

When comparing the results of the domain adaptation for the synthetic, real or both train-
ing sets with the results without domain adaptation, we observe that the domain adaptation
improves the pose estimation for all datasets. When we only use the correspondences for
refinement of the real training images without transforming the synthetic data (real corr),
the results are in few cases better than our approach with domain adaptation (with DA real),
but for the KITTI dataset the accuracy is much worse. This is due to the aforementioned
coarse-view dominance, whose lack of fine viewpoints in the target domain lead to erroneus
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3DObj [24] EPFL [19] KITTI [6] PASCAL3D [31]
8views 8views 16views 32views 8views 16views 8views 16views

gt 99.31 80.06 73.57 60.59 82.23 77.89 56.84 35.41

w/o DA

syn 75.69 65.98 60.92 46.55 58.69 47.25 56.50 49.53
real 99.31 76.04 65.46 49.90 74.43 55.69 53.21 35.43
joint 88.89 72.52 63.81 50.04 72.75 54.30 58.31 53.78

real corr 99.31 77.43 70.25 58.53 63.44 51.71 52.54 40.49

with DA
syn 90.97 74.62 67.01 51.06 64.28 54.07 61.60 55.65
real 99.31 78.37 69.04 55.22 74.46 56.28 54.56 39.17
joint 93.06 75.73 71.93 53.00 73.23 59.04 61.60 55.28

Table 2: Pose estimation accuracy on test data using real training data, synthetic data or both
training sets.

(a) Unlabelled target samples (b) 4 viewpoint labels in target samples

Figure 6: Confusion matrix for EPFL dataset in a 16-viewpoint refinement. (a) Without
supervision rotations by 180 degrees are sometimes confused. (b) When weak supervision
from the four coarse viewpoint labels is used, these confusions are resolved.

correspondences, while the global transformation matrix W attenuates their impact. Using
the synthetic data not only for label refinement but also as additional training data for pose
estimation (with DA joint) does not always improve the pose estimation accuracy. An excep-
tion is the PASCAL3D dataset. Since the training data does not contain many object class
variations, the synthetic data significantly boosts the performance since it increases the shape
variations within the training data.

Unsupervised refinement. Our approach could also be applied in an unsupervised setting
where the real training images are not annotated. In this case, the clustering and the com-
putation of the correspondences are no longer constrained by the coarse viewpoint labels as
illustrated in Figure 3. The difference between the unsupervised and the weakly supervised
setting with four coarse viewpoints is illustrated in Figure 6. Without supervision the confu-
sion matrix shows three diagonals since two views that differ by 180 degrees are sometimes
confused. Using weak supervision resolves this problem. This shows how our approach
leverages the abilities of humans of estimating coarse viewpoints and the pose accuracy of
synthetic data as illustrated in Figure 1.
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5 Conclusions
In this paper, we have proposed to use synthetic data to refine the labels of real training
images. We have evaluated our approach in the context of pose estimation, where the real
images are manually labeled by only four coarse views, but finer viewpoint estimates are
required. Due to the differences between the real and the synthetic data, we apply domain
adaptation to align both domains and improve the viewpoint refinement. For domain adapta-
tion, we consider the real images as weakly labeled data and use the coarse views to constrain
the learning of the transformation from the synthetic data to the real data. We have evalu-
ated our approach on four car datasets for pose estimation and compared it to other domain
adaptation approaches. The results have shown that 3D generated models can be success-
fully used to refine labels in real images and therefore overcome the cumbersome annotation
of real images by accurate and fine viewpoints. In particular, our approach leverages the
abilities of humans of estimating coarse viewpoints and the pose accuracy of synthetic data.
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