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Abstract
Object proposal has become a popular paradigm to replace exhaustive sliding win-

dow search in current top-performing methods in PASCAL VOC and ImageNet. Re-
cently, Hosang et al. [17] conduct the first unified study of existing methods’ in terms
of various image-level degradations. On the other hand, the vital question "what object-
level characteristics really affect existing methods’ performance?" is not yet answered.
Inspired by Hoiem et al.’s work in categorical object detection [16], this paper conducts
the first meta-analysis of various object-level characteristics’ impact on state-of-the-art
object proposal methods. Specifically, we examine the effects of object size, aspect ra-
tio, iconic view, color contrast, shape regularity and texture. We also analyse existing
methods’ localization accuracy and latency for various PASCAL VOC object classes.
Our study reveals the limitations of existing methods in terms of non-iconic view, small
object size, low color contrast, shape regularity etc. Based on our observations, lessons
are also learned and shared with respect to the selection of existing object proposal tech-
nologies as well as the design of the future ones.

1 Introduction
Recent top performing methods in PASCAL VOC [11] and ImageNet [29] make use of
object proposal to replace exhaustive window search [5, 10, 13, 14, 34]. Object proposal’s
effectiveness is rooted in the assumption that there are general cues to differentiate objects
from the background. Since the very first work by Alexe et al. [1], many object proposal
methods have been proposed [2, 3, 4, 9, 18, 20, 23, 26, 27, 32, 37] and tested on various
large scale datasets [11, 22, 29], and their overall detection rates versus different thresholds
or window number have also been reported. Yet such partial performance summaries give
us little idea of a method’s strengths and weaknesses for further improvement, and users are
still facing difficulties in choosing methods for their applications. Therefore, more detailed
analysis of existing state-of-the-arts is critical for future research and applications.

There are considerable works in categorical object detection [6, 8, 15, 33, 35] which
study the impact of different object-level properties (such as occlusion, aspect ratio, view-
point change) to the performance of categorical object detectors. Others have investigated
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dataset design [11, 25, 31] and impact of the amount of training data [36]. Our work is greatly
inspired by the recent research by Hoeim et al. [16] and Russakovsky et al. [29] in categor-
ical object detection and Hosang et al. [17] in object proposal. Hoiem et al.’s work [16]
provides depth analysis of existing categorical object detectors in PASCAL VOC in terms
of object size, aspect ratio, parts and viewpoints, yet they provided annotations for a limited
object classes. Russakovsky et al. [29] provide further depth analysis of the state-of-the-art
categorical object detectors in ILSVRC in terms of various object attributes such as color,
shape and texture, though such annotations are not publicly available. Hosang et al. [17] con-
duct the first unified and comprehensive comparison of existing object proposal methods in
terms of various image-level degradations, but the more relevant object-level characteristics
analysis are missing.

Our contributions can be summarized in three aspects. First, we investigate the influence
of object-level characteristics over state-of-the-art object proposal methods for the first time.
Although there are some similar works in categorical object detection, few research has been
conducted on object proposal side to the best of our knowledge. Second, we introduce the
concept of localization latency to evaluate a method’s localization efficiency and accuracy.
Third, we create a fully annotated PASCAL VOC dataset with various object-level charac-
teristics to facilitate our analysis. The annotations take us nearly one month’s time which
will be released to facilitate further related research.

2 Evaluation Protocol

2.1 PASCAL VOC detection dataset

Dataset Selection and Annotation: Our experiments are based on PASCAL VOC2007 test
set, which has been widely used in evaluating object proposal methods [1, 4, 17, 37]. The
test set has around 15000 object instances across 20 object classes. Hoiem et al. [16] make
annotations for seven object classes with the characteristics such as object size, aspect ratio,
occlusion etc. In our work, we keep existing annotations for object size and aspect ratio, and
extend them to all other object classes. In addition, we make annotations for other object
properties (color contrast, shape regularity and textureness), as studied in Russakovsky et
al. [29]. The annotations are conducted by two students and finally confirmed by an expert
to reduce the labelling ambiguity.

Evaluation Criteria: A proposed window B is treated as detected if its Intersection-
over-Union (IoU) with a ground truth bounding box B̄: IoU(B̄,B) = area(B ∩ B̄)

area(B ∪ B̄) is above a
certain threshold T . The ‘best instance IoU’ (BIoU) measures the maximum IoU between a
ground-truth instance G with a group of window candidates S:

BIoU(G,S) = max
s∈S

IoU(G,s) (1)

The windows of all methods are pre-computed by Hosang et al. [17]. We adopt the com-
monly used criterion to evaluate proposal quality by fixing the number of proposals, then
the recall varies with different IoU thresholds. Due to the page limit, we choose the ‘recall
versus IoU’ curve for 1000 windows to better reflect existing methods’ performance in terms
of localization accuracy and detection rate. Numbers next to each method in Fig 1∼ 7 indi-
cate area under curve and average window number per image, respectively. We also attach
the figures for other window number (100 and 10000) in supplementary material for refer-
ence. The curves for ‘recall versus region number’ and ‘area under recall-versus-IoU’ are
also attached to provide complementary information.
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2.2 Object Proposal Methods

We choose representative and recent top-performing object proposal methods in PASCAL
VOC 2007 dataset as our experiment candidates to reflect the recent development. Existing
methods can be divided into two major groups, window based methods and region based
methods.

Window based methods generate proposals by ranking each sampled window according
to the likelihood that it contains the object of interest.

1) Objectness (O) [1] assigns the objectness likelihood by sampling initial windows
from salient object locations and then the cues from color contrast, edge distribution, super-
pixel straddling are integrated by using Bayes rule.

2) Rathu2011 (R1) [26] extends [1] by using new objectness cues from superpixel and
image gradients, and applies a structured output ranking method to combine them.

3) BING (B) [4] ranks coarse to fine sliding windows by using classifiers trained with
the normalized gradient feature. It encloses the closed contour information and can run at
300fps on a desktop.

4) EdgeBox (EB) [37] also evaluates the objectness with sliding windows, but the scor-
ing is derived from the state-of-the-art structured forest contour detector [7]. Each window
is assigned a score corresponds to the strength of enclosed contour signal.

Region based methods generate multiple foreground regions that correspond to objects.
The process starts from single or multiple over-segmentation, then the regions are grouped
according to the multiple cues and finally the candidate regions are ranked either according
to region hierarchy or by using a learned ranking classifiers etc. A region proposal can be
transformed to a window proposal by enclosing the region with the tightest bounding box.

1) CPMC (C) [3] applies non-overlapped seeds to train appearance models for fore-
ground and background and solves graph cuts to generate foreground proposals. Then the
proposals are ranked according to various cues. Endres et al. [9] applies a similar pipeline
but using a seeding map from occlusion boundary and a different ranking model.

2) MCG (M) [2] makes use of a novel multi-scale eigenvector solver to quickly glob-
alize the object contours. Then the regions are merged to form candidates according to the
contour similarities in different scales. Further candidates are generated by merging up to
four regions, and are ranked according to various cues similar to CPMC.

3) SelectiveSearch (SS) [32] also starts from superpixels, but it applies a diversified
approach to form object regions by merging them with a set of hand-crafted features and
similarity functions.

4) RandomizedPrim (RP) [23] follows a similar approach to SelectiveSearch, while the
weights between superpixels are learned and the merging process is randomized.

5) Geodesic (G) [21] assigns seeds by using heuristics or learned classifiers for subse-
quent geodesic distance transform. The level sets of each geodesic transform define and rank
the foregrounds.

6) RIGOR (RI) [18] is similar to CPMC, but the contour detector is replaced with the
fast structure forest [7] and the algorithm is speeded up by reusing the inference.

Baselines are also considered in our work to provide reference points to study the corre-
lation between the existing methods and their components. We consider two baselines from
Hosang et al. [17] in this work. 1) Uniform (U) baseline generates proposals by uniformly
sampling the object center, square root area and aspect ratio. 2) Superpixel (SP) of [12] is
adopted, as four methods in this work apply its superpixel. This baseline over-segments an
image into regions where each region is treated as a candidate.
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3 Profiling Localization Accuracy and Latency

Method Person Bird Cat Cow Dog Horse Sheep Plane Bike Boat Bus Car MBike Train Bottle Chair Table Plant Sofa TV mIoU
Bing 0.58 0.57 0.70 0.58 0.67 0.63 0.57 0.61 0.61 0.53 0.62 0.56 0.62 0.67 0.49 0.55 0.65 0.56 0.68 0.59 0.60
EB 0.65 0.69 0.80 0.72 0.80 0.77 0.70 0.74 0.74 0.64 0.78 0.66 0.74 0.78 0.52 0.63 0.74 0.63 0.77 0.76 0.71
OBJ 0.57 0.57 0.72 0.59 0.69 0.67 0.56 0.64 0.63 0.54 0.68 0.57 0.63 0.70 0.45 0.53 0.70 0.54 0.72 0.60 0.61
Rathu 0.57 0.57 0.79 0.61 0.77 0.73 0.59 0.69 0.67 0.53 0.73 0.57 0.69 0.77 0.38 0.50 0.74 0.52 0.79 0.68 0.64
Mean 0.59 0.60 0.75 0.63 0.73 0.70 0.60 0.67 0.66 0.56 0.70 0.59 0.67 0.73 0.46 0.55 0.71 0.56 0.74 0.66 0.64
CPMC 0.62 0.65 0.87 0.70 0.85 0.76 0.66 0.72 0.68 0.55 0.77 0.64 0.72 0.80 0.46 0.61 0.76 0.59 0.85 0.74 0.70
GOP 0.66 0.65 0.86 0.72 0.82 0.77 0.68 0.69 0.72 0.59 0.80 0.69 0.74 0.81 0.52 0.66 0.78 0.64 0.83 0.76 0.72
MCG 0.71 0.70 0.87 0.77 0.85 0.79 0.73 0.76 0.75 0.64 0.82 0.72 0.77 0.83 0.58 0.69 0.78 0.65 0.87 0.80 0.75
RP 0.63 0.64 0.85 0.68 0.82 0.73 0.66 0.77 0.71 0.59 0.77 0.65 0.73 0.78 0.49 0.65 0.79 0.61 0.86 0.75 0.71
RIGOR 0.61 0.64 0.87 0.69 0.82 0.75 0.64 0.69 0.70 0.57 0.76 0.65 0.72 0.78 0.48 0.62 0.74 0.59 0.84 0.72 0.69
SS 0.67 0.69 0.87 0.72 0.85 0.77 0.68 0.79 0.75 0.63 0.79 0.68 0.76 0.82 0.53 0.67 0.82 0.64 0.87 0.77 0.74
Mean 0.65 0.66 0.86 0.71 0.83 0.76 0.68 0.74 0.72 0.60 0.78 0.67 0.74 0.80 0.5083 0.65 0.78 0.62 0.85 0.76 0.72

Table 1: Different methods’ localization accuracy for each PASCAL VOC class, which is defined
in Sec 3. The methods on the upper parts of the rows are the window based methods, the methods
following rows are for the region based methods. Bold face numerics are the best results for each
methodology. While, the bold face numerics in red color demonstrates the bests results for all methods.

To motivate our object level analysis, we need to answer the question ‘Are state-of-the-
arts really good at all kinds of objects?’. Therefore, we juxtapose each PASCAL VOC class’
localization accuracy in Table 1. The localization accuracy is measured by taking average
of the ’mean best instance IoU’ for different window number L ∈ {100,1000,10000}, where
‘mean best instance IoU’ measures the mean BIoU (Eq. 1) between all ground-truth instances
and a group of window candidates S, given |S| ∈ L. As demonstrated in Table 1, different
methods’ localization accuracy varies with classes, which gives hints that object proposals
are not as ‘object agnostic’ as the original assumption. The region based methods have
higher localization accuracy than window based methods. MCG and SelectiveSearch are the
top performing region based methods, though window based EdgeBox shows comparable
performance. The localization accuracy for region based methods are similar. One potential
explanation is that all region based methods follow similar pipeline by grouping superpixels
with either learned or hand-crafted edge measures.

Method Person Bird Cat Cow Dog Horse Sheep Plane Bike Boat Bus Car MBike Train Bottle Chair Table Plant Sofa TV Mean
Bing 18.2 15.1 13.4 14.3 14.2 14.1 14.2 14.1 14.3 14.7 13.6 16.6 14.1 13.6 15.6 16.4 13.7 15.2 13.9 14.3 14.7
EB 18 14.6 13.0 13.6 13.6 13.4 13.7 13.5 13.8 14.3 12.7 16.1 13.6 13.1 15.4 16.2 13.5 15 13.5 13.4 14.2
Obj 18.3 15.1 13.4 14.2 14.2 14.0 14.3 13.9 14.3 14.7 13.3 16.5 14.2 13.3 15.7 16.6 13.5 15.3 13.6 14.3 14.6
Rathu 18.5 15.3 14.0 14.4 14.7 14.5 14.4 14.1 14.5 14.8 13.6 16.6 14.4 13.8 15.8 16.7 13.8 15.5 14.1 14.3 14.9
Mean 18.3 15.0 13.4 14.1 14.2 14.0 14.1 13.9 14.2 14.6 13.3 16.5 14.1 13.4 15.6 16.5 13.6 15.2 13.8 14.1 14.6
CPMC 18.3 14.9 13.2 13.9 13.9 14.0 14.0 13.8 14.4 14.7 13.4 16.4 14.1 13.4 15.7 16.4 13.7 15.3 13.6 14 14.6
GOP 18.4 15.1 13.9 14.0 14.5 14.4 14.0 14.1 14.5 14.7 13.6 16.4 14.5 14.0 15.6 16.4 14.0 15.3 14.1 14.0 14.8
MCG 18.2 14.9 13.3 13.8 14.1 14.1 13.8 13.8 14.3 14.6 13.3 16.3 14.1 13.6 15.5 16.3 13.9 15.2 13.8 13.9 14.5
RP 18.5 15.2 14.1 14.3 14.8 14.6 14.3 14.0 14.6 14.7 13.9 16.7 14.5 14.1 15.7 16.5 14.1 15.4 14.2 14.3 14.9
RIGOR 18.3 14.9 13.1 14.0 13.9 14.0 14.0 13.7 14.2 14.6 13.3 16.3 14.0 13.3 15.6 16.3 13.6 15.2 13.3 14.0 14.5
SS 18.4 15.1 13.8 14.2 14.4 14.4 14.2 13.7 14.4 14.7 13.6 16.6 14.3 13.8 15.7 16.5 13.8 15.4 14 14.3 14.8
Mean 18.3 15.0 13.6 14.0 14.3 14.2 14.0 13.9 14.4 14.7 13.5 16.5 14.2 13.7 15.6 16.4 13.9 15.3 13.8 14.1 14.7

Table 2: Different methods’ localization latency for each PASCAL VOC class, which is defined in
Eq. 2. The methods in the top part of rows are the window based approach, the methods in the below
rows are for the region based approach. The blue numerics indicate the top 5 lowest latency classes for
each method, the red ones indicate the top 5 highest latency classes.

A good object proposal method should not only produce candidates with high accuracy,
but also use as less windows as possible. To summarize a method’s performance in terms
of the accuracy and window number, we propose the localization latency metric as inspired
by the clutterness measure in [28], which measures the average number of windows required
to localize all object instances. Moreover, different object classes intuitively should have
different levels of localization latency. For example, some classes (e.g. sheep or cow) often
stay in a clean background, and are easy to be localized with a few windows. On the other
hand, when an object is located in a cluttered indoor, more windows may be needed to
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localize the object. By studying the localization latency, we can have some initial idea of
what object appearance properties may affect the performance of existing methods.

To quantify a method I’s localization latency, we sample K (K ∈ {100,1000,10000})
windows W I

1 ,W
I
2 , ...,W

I
K in returned descending order. Let OBJ(m,T,K) be the total number

of sampled windows to localize all instances of the target category in image m under varying
threshold T ∈ {0.5,0.7,0.85} and K (i.e. OBJ(m,T,K) = ∑i min{k ∈ K : IOU(W m

k ,Bm
i ) >

T}). If using k windows still can’t localize the object, k is set to K +1. M is the number of
images contain the instances. The localization latency is defined as follows:

LocalizationLatency =
1
|T |∑T

log2(
1
M ∑

K
∑
m

OBJ(m,T,K)) (2)

Table 2 juxtaposes the class localization latency of the selected methods. The higher
the measure, the more windows are needed to localize the object. The top 5 most diffi-
cult classes are ‘Person’, ‘Car’, ‘Chair’, ‘Plant’ and ‘TV’, where the objects contain strong
intra-variation, thin structures and often from images with background clutter. On the other
hand, the top 5 easiest classes are ‘Cats’, ‘Bus’, ‘Train’, ‘Table’ and ‘Plane’, which tend to
have large homogeneous foreground or background or are highly contrasted. It can therefore
be concluded that some object properties can indeed influence the performance of exist-
ing proposal methods. Moreover, by inspecting from the table, the window based methods
have lower localization latency than region based methods. Our interpretation for such re-
sult is that window based approach inherently assumes that objects are spatially compact.
As a result, the window sampled by using carefully hand-crafted parameters can capture
more integrated objects in the combinatorial space, which are difficult to be detected by us-
ing bottom-up region based approach. Finally, the measures also reflect complementariness
among different methods, which is difficult to be revealed by overall IoU metric.

4 Impact of Object Characteristics
So far, we have studied existing methods’ localization accuracy and latency, and can con-
clude that object appearance indeed influences the performance of different proposal meth-
ods. We look further into what object properties can bring such influences. First, we study
the impact of natural and man-made objects. Then, we examine the impact of additional
properties: iconic view, object size, aspect ratio, color contrast, shape regularity and texture-
ness.
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Figure 1: Recall versus IoU threshold curves for
‘Natural’ (a) and ‘Man-Made’ (b). Dashed lines are
for window based methods and solid lines are for
region based methods. Dashed lines with dots are
for the baseline methods.
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Figure 2: Recall versus IoU threshold curves for
‘Non-iconic’ (a) and ‘Iconic’ (b) objects. Dashed
lines are for window based methods and solid lines
are for region based methods. Dashed lines with
dots are for the baseline methods.

Natural vs Man-made classifies objects as ‘natural’ (e.g. horse, person, cow et al) or
‘man-made’ (e.g. motorbike, tv monitor et al). The ‘recall versus IoU threshold’ curves
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for ‘Natural’ and ‘Man-Made’ objects are shown in Figure 1. The recall rate for natural
objects is slightly higher than man-made ones, though the difference is almost negligible.
This suggests existing objectness rules are general to man-made and nature objects. Region
based methods maintain a smooth recall rate transition, while the window based EdgeBox
achieves the highest recall when it is tuned for IoU = 0.7.

Iconic Objects refers to the objects in canonical perspective centred in the image with
certain size, and vice versa. Many commercial photos contain such ‘iconic objects’. On the
other hand, for images such as street or indoor scenes, objects appear in various locations,
scale and aspect ratio. Therefore, we are interested in studying whether existing methods
would favour such ‘iconic objects’. To decide whether an object is iconic or not, we estimate
a multivariate Gaussian distribution for the bounding box parameters e.g. centre position,
square root area, and log aspect ratio from the PASCAL VOC’s training set as Hosang et
al. [17]. Then we sample bounding boxes from this distribution. An iconic object is decided
by checking if there is an sampled bounding box that has an IoU ≥ 0.6 with the ground
truth. Non-iconic objects take up nearly 68% of the objects. The “recall versus IoU thresh-
old” curves for ‘Non-iconic’ and ‘Iconic’ objects are shown in Figure 2. To our surprise,
existing methods strongly favour iconic objects. One conjecture is that some methods al-
ready incorporate the prior knowledge for iconic object by applying classifiers with location
features (e.g. MCG, CPMC, RIGOR) or window sampling technique (e.g. Rathu2011).
On the other hand, many methods that don’t incorporate such prior (e.g. BING, EdgeBox,
Objectness, SelectiveSearch, Geodesic) also exhibit different degrees of performance loss,
though such loss is smaller compared with the ones apply the location prior (except MCG).
Such phenomenon suggests the existing methods have limitations in localizing objects in
estrange positions and appearances. Our subsequent analysis also supports such hypothesis.
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Figure 3: Recall versus IoU threshold curves for different object sizes: ‘extra-small’ (a), ‘small’ (b), ‘medium’
(c), ‘large’ (d) and ‘extra-large’ (c). Dashed lines are for window based methods and solid lines are for region based
methods. Dashed lines with dots are for the baseline methods.
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Figure 4: Recall versus IoU threshold curves for different aspect ratio: ‘extra-tall’ (a), ‘tall’ (b), ‘medium’ (c),
‘wide’ (d) and ‘extra-wide’ (c). Dashed lines are for window based methods and solid lines are for region based
methods. Dashed lines with dots are for the baseline methods.

Object Size is measured as the pixel area of the bounding box, each bounding box is
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(L: next 20%); ‘extra-large’ (XL: next 10%). The “recall versus IoU threshold” curves for
different object sizes are shown in Figure 3. Existing methods exhibit various performance
in terms of different sizes, typically for objects from extra-small to medium size. EdgeBox
shows the best performance for small to medium range objects when IoU ≤ 0.7. BING’s
performance is also stable across this size range. For other sizes, EdgeBox also shows com-
parable performance with the region based approach. Rahtu2011 (R1) is most size-sensitive
window based method, which works decently for localizing large and extra-large objects.
Such phenomenon for window based methods is correlated with the initial window sampling
techniques (as shown in the the ‘uniform’ baseline), which favour searching sizeable object
first. MCG is the best performing region based method across different sizes. Interestingly,
superpixel baseline shows better performance than all existing methods for extra-small cases,
which supports our previous hypothesis that the pipeline of existing methods has a tendency
to ignore small to medium scale objects or has difficulty in picking them out, though more
component-wise analysis is left for future work.

Aspect Ratio is defined as the object width divided by height. The objects are catego-
rized into ‘extra-tall’ (XT), ‘tall’ (T), ‘medium’ (M), ‘wide’ (W) and ‘extra-wide’ (XW), also
according to the percentile size within the dataset. The “recall versus IoU threshold” curves
for different aspect ratios are shown in Figure 4. Most objects from ‘medium’ (M) to ‘wide’
(W) are easier to localize than other aspect ratios, as many ‘extra-tall’ and ‘tall’ are correlated
with ‘bottle’ and ‘person’ classes. Existing methods experience variations in terms of various
aspect ratios. MCG and EdgeBox are the top performing methods when IoU ≤ 0.7. The per-
formance of region based methods are correlated with the superpixel baseline, as superpixels
tend to oversegment image into regular shape regions. Another notable phenomenon is the
performance variation for seeded region based approach (CPMC and RIGOR). One potne-
tial explanation is that CPMC and RIGOR applies a regular grid based seeding approach,
which may not produce stable seeding for elongated objects. MCG and Geodesic applies an
irregular seeding approach from contour map, which is more stable for objects in various as-
pect ratio. The performance of window based methods is also correlated with initial window
sampling, which can be observed by inspecting the ‘uniform’ baseline. The window based
methods maintain performance at middle aspect ratio range, while show lower performance
at two ends of the aspect ratio, due to the insufficient parameter sampling.

Color Distinctiveness is divided into three classes: ‘low’ (e.g. black car moving in the
night), ‘medium’ (e.g a pedestrian in human class), ‘high’ (e.g. white horse on the grassland).
One common assumption for object proposal is that objects contain properties which help
them stand out from the background areas. Therefore, objects with strong contrast with
the background should be easier to get localized. The “recall versus IoU threshold” curves
for different color contrast level are shown in Figure 5. Our analysis did suggest such
preference for highly contrast objects for existing methods, since many existing methods
either explicitly modelling color contrast (e.g. CPMC, RIGOR, SelectiveSearch, Objectness)
or implicitly making use of color contrast based features (e.g. MCG, EdgeBox, Geodeisc,
RandomizedPrime etc.). A direct consequence for such design flavour is that region based
methods are the most sensitive to color contrast changes, whereas window based methods
suffer less because they benefit from gradient and shape cues (e.g. EdgeBox, BING and
Objectness). On the other hand, Rathu2011 is quite sensitive to contrast changes as it relies
on superpixel based window sampling technique. As color distinctiveness is also correlated
with non-iconic objects, we evaluate the color contrast’s influence in terms of iconic and non-
iconic views individually. The improvement shifts from low contrast to hight contrast for
both kinds of objects follows similar performance improvement pattern (the figures can be



8 H.ZHU, S.LU, J.CAI, G. LEE:

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU overlap threshold

re
ca

ll

 

 
SS 64.2 (998.8)
RP 61.7 (997.2)
C 57 (733)
M 64.7 (999.4)
Ri 59.3 (668.5)
G 62.3 (893.3)
O 54.1 (999.5)
R1 52.7 (1000)
EB 63.7 (991.1)
B 57.2 (1000)
U 29.2 (1000)
SP 50.1 (742.7)

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU overlap threshold

re
ca

ll

 

 
SS 73 (998.8)
RP 69.7 (997.2)
C 69.6 (733)
M 75.2 (999.4)
Ri 71.3 (668.5)
G 72.4 (893.3)
O 62.1 (999.5)
R1 62.7 (1000)
EB 72.7 (991.1)
B 61.9 (1000)
U 36.2 (1000)
SP 49.5 (742.7)

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU overlap threshold

re
ca

ll

 

 
SS 85.1 (998.8)
RP 82.7 (997.2)
C 83.9 (733)
M 86.4 (999.4)
Ri 84.7 (668.5)
G 83.3 (893.3)
O 69.4 (999.5)
R1 73.9 (1000)
EB 78.9 (991.1)
B 66.1 (1000)
U 45 (1000)
SP 56.1 (742.7)

(a) (b) (c)
Figure 5: Recall versus IoU threshold curves for different color contrast level: ‘low’ (a), ‘medium’ (b) and ‘high’
(c). Dashed lines are for window based methods and solid lines are for region based methods. Dashed lines with
dots are for the baseline methods.
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Figure 6: Recall versus IoU threshold curves for different shape regularities: ‘low’ (a), ‘medium’ (b) and ‘high’
(c). Dashed lines are for window based methods and solid lines are for region based methods. Dashed lines with
dots are for the baseline methods.

found in last section of the supplementary material). Therefore, color contrast is an important
factor in influencing existing state-of-the-arts.

Shape Regularity is classified into three categories including ‘low’ (e.g. tv monitor,
bus), ‘medium’ (e.g car), ‘high’ (e.g. horse, dog). The “recall versus IoU threshold” curves
for different shape regularities are shown in Figure 6. Nearly all existing methods make use
of some shape or gradient information, such as BING, EdgeBox et al. Therefore, it is in-
teresting to inspect whether objects with more irregular shapes are easier to be located. Our
experimental results partially support such intuition and are also consistent with the method
design. For example, EdgeBox directly evaluates the enclosed contour strengths. The more
irregular the shape enclosed, the more contour that may be included, and so makes it easier
to be localized. On the other hand, BING is less sensitive to shape regularity change as it
rely on a compactly represented shape template. Region based methods are more sensitive
to shape regularity changes, as they also relies on contour detections. Moreover, when meth-
ods overly rely on such cues, they face difficulties under weak illumination changes or other
image degradations where the shape cues can be easily contaminated. This is supported by
evaluating the shape regularity’s influence in terms of iconic and non-iconic view individu-
ally. The shape information carried non-iconic view is weak, therefore the performance gap
between these two kinds of objects is large (the figures can be observed from last section of
the supplementary material).

Textureness is defined by following classes: ‘low’ (e.g. horse), ‘medium’ (e.g sheep),
‘high’ (e.g. damaitting). The “recall versus IoU threshold” curves for different texture levels
are shown in Figure 7. According to the figures, there is little correlation between the per-
formance and the amount of textures, except for Rathu. We conjecture that this phenomenon
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Figure 7: Recall versus IoU threshold curves for different texture levels: ‘low’ (a), ‘medium’ (b) and ‘high’ (c).
Dashed lines are for window based methods and solid lines are for region based methods. Dashed lines with dots
are for the baseline methods.

is caused by the spatial support and feature design. Existing methods make use of large
spatial support (e.g. bounding box and superpixels) to extract mid-level features and pro-
duce candidate regions, which is more robust to small scale texture change. Noted, single
superpixel segmentation is not that repeatable across different texture levels as indicated in
the figure, existing region based approach makes use of diversified superpixel generation to
greatly alleviates the sensitivity to textureness change.

5 Conclusion

In this work, we study the influence of object-level characteristics over existing object pro-
posal methods. We study existing methods’ localization accuracy and latency, which sug-
gests existing methods’ performance variation for different classes and their complemen-
tariness. Our further analysis along different object characteristics suggest existing meth-
ods’ pros and cons. BING, Geodesic, EdgeBox, SelectiveSearch and MCG are the methods
which achieve stable performance across different characteristics. In terms of localization
accuracy, MCG is the best region based method across various properties, though the speed
is mediocre. The speed of BING is good, however its localization is quite poor. On the
other hand, EdgeBox, Geodesic, SelectiveSearch achieve good balance between accuracy
and speed. A more detailed summarization along each dimensions can be found in supple-
mentary material.

The study of iconic view reveals existing methods’ difficulty in localizing objects outside
canonical perspectives, hence future work should focus more on improving the recall rate
at non-canonical view and reducing the influence of location prior. This also applies to
experiment and dataset design. Our concerns is that further object proposal research along
PASCAL VOC and ImageNet has a risk of over-fitting the large numbers of iconic objects
but achieves little improvements for non-iconic objects. The recent MSCOCO dataset [22] is
a good attempt by collecting images with more balanced distribution in perspective change.

Existing methods also have limitations in terms of object size, aspect ratio, color contrast
and shape change. The improvement with respect to these attributes could be substantial
though it may not be an easy task as difficult cases are combinations of different challenges.
Large improvement in a few aspects may bring small improvement in terms of overall per-
formance, therefore further analysis along different attributes is encouraged to better reflect
the performance development.

There are some potential directions worthwhile for exploration, e.g. developing specific
template for challenge cases such as low contrast, illumination and resolution [24]. Further
gain can be can also be achieved by using context [30]. Moreover, most existing methods use
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bottom-up methods to generate object proposal, and the combination with mid-level shape
cues can be helpful as investigated in ShapeSharing [19].

In our future work, we will conduct similar research for MSCOCO, which has a different
distributions from PASCAL VOC and includes more annotated attributes. Such work will
further reveal insight of existing methods and cast light for future research.
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