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Figure 1: Online domain adaptation for MOT via Bayesian filtering coupled with multi-task adaptation of all detectors jointly.

Automatically detecting, labeling, and tracking objects in videos depends
above all on accurate category-level object detectors. These might, how-
ever, not always be available in practice, as acquiring high-quality large
scale labeled training datasets is either too costly or impractical for all
possible real-world applications. A scalable solution consists in re-using
object detectors pre-trained on generic datasets. This work is the first
to investigate the problem of on-line domain adaptation of object detec-
tors for causal multi-object tracking (MOT). We propose to alleviate the
dataset bias by adapting detectors from category to instances, and back:
(i) we jointly learn all target models by adapting them from the pre-trained
one, and (ii) we also adapt the pre-trained model on-line. Previous works
investigated detector adaptation or on-line learning of appearance mod-
els, but not both jointly. Our approach can be interpreted as a general-
ization. We integrate our domain adaptation strategy in a novel motion
model combining learned deterministic models with standard Bayesian
filtering (cf. figure above) inspired by the popular Bootstrap filter. In par-
ticular, we leverage several techniques not widely used in MOT yet: (i)
recent improvements in object detection based on object proposals, (ii)
large-displacement optical flow estimation, (iii) the Fisher Vector repre-
sentation, and (iv) ConvNet features for object detection. In addition, we
use a Sequential Monte Carlo algorithm to approximate the filtering dis-
tribution of our Markovian motion model of the latent target locations.

Contrary to common practice in MOT, we here use object proposals,
which we rank with a category-specific linear classifier parameterized by
a vector w. This classifier returns the probability that a candidate window
x, represented by a feature vector φt(x), contains an object of the category

of interest at time t by P(x|w) =
(

1+ e−wT φt (x)
)−1

. To represent propos-
als, we explore two common representations adapted to the computational
constraints of tracking: Fisher Vectors with a single Gaussian and features
from the memory-efficient pre-trained GoogLeNet ConvNet [6].

We propose a convex multi-task learning objective to jointly adapt
on-line (i) all trackers from the pre-trained generic detector (category-to-
instance), and (ii) the pre-trained category-level model from the trackers
(instances-to-category). The first category-to-instance adaptation hap-
pens at the creation of a new track w(t0)

i by warm-starting its optimiza-
tion from the category-level model w(t0), i.e. an already good solution.
This leads to faster convergence and stronger regularization. The sec-
ond category-to-instance adaptation consists in updating all target mod-
els jointly using multi-task learning. Given the stacked target models
W(t) = {w(t)

1 , . . . ,w(t)
Nt
} (Nt in total), and the training samples and labels

(X(t),y(t)) mined for all targets in frame t, updating all appearance models
jointly amounts to minimizing the regularized empirical risk:

W(t) = argmin
W

Lt(X(t),y(t),W)+λΩt(W) (1)

with the loss Lt and multi-task regularization term Ωt defined as:

Lt(X(t),y(t),W) =
1
Nt

Nt

∑
i=1

1
ni

ni

∑
k=1

`t(xi,k , yi,k , wi) (2)

method MOTA↑ MOTP↑ MT↑ ML↓ Rec.↑ Prec.↑ FAR↓ IDS↓ FRG↓
DP_MCF† [5] 12.0% 68.5% 0.1% 80.2% 14.6% 85.5% 7.7% 84 327

G_TBD† [2] 17.5% 68.0% 0.9% 59.2% 30.0% 71.3% 37.6% 115 528
CFT [4] 17.6% 66.7% 1.8% 45.7% 33.5% 69.1% 47.2% 238 592
CIT [3] 22.8% 68.5% 1.9% 43.4% 33.9% 76.5% 32.6% 380 809

ODAMOT 23.6% 68.7% 1.8% 43.6% 34.2% 77.5% 31.1% 376 784

Table 1: MOT results on the PASCAL-to-KITTI domain adaptation dataset for the
R-CNN-like detector. Methods with † are offline, the others are online.

Ωt(W) =
1

2Nt

Nt

∑
i=1
‖wi− w̄(t−1)‖2

2, (3)

where w̄(t−1) is the (running) mean of all previous instance models, and
`t(x,y,w) is the logistic loss.

The instance-to-category adaptation allows to continuously special-
ize the global appearance model to the specific video stream. Once the
detectors wi are updated in frame t, a new scene-adapted category detec-
tor is readily available as the running average of instance models:

w̄(t) =
1

N̄t−1 +Nt

(
N̄t−1w̄(t−1) +

Nt

∑
i=1

w(t)
i

)
, where N̄t−1 =

t−1

∑
j=1

N j. (4)

Our multi-task formulation enforces parameter sharing between models
to reduce model drift and robustly handle false alarms, while allowing for
continuous domain adaptation to gradually decrease missed detections.

We evaluate our algorithm (ODAMOT) on the challenging KITTI car
tracking benchmark [1]. On this dataset, ODAMOT achieves 57.06%
MOTA and ranks third of all published methods despite its simple occlu-
sion reasoning. We then quantitatively measure the benefit of our domain
adaptation strategy on the new PASCAL-to-KITTI dataset we introduce to
study the domain mismatch problem in MOT. The training set (the source
domain) of this dataset consists of the training images of the standard
Pascal VOC 2007 detection challenge, whereas the test set (the target do-
main) includes the 21 training videos of the KITTI tracking challenge.
As expected, unrelated training data degrades MOT performance (cf. Ta-
ble 1), however, our results show that domain adaptation partly mitigates
this problem. Our multi-task adaptation from category-to-instances and
back allows to improve overall MOT accuracy by increasing recall while
maintaining high precision and limiting model drift.
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