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Abstract

We present a differential geometric approach for cylindrical anatomical surface re-
construction from 3D volumetric data that may have missing slices or discontinuities.
We extract planar boundaries from the 2D image slices, and parameterize them by an in-
dexed set of curves. Under the SRVF framework, the curves are represented as invariant
elements of a nonlinear shape space. Differently from standard approaches, we use tools
such as exponential maps and geodesics from Riemannian geometry and solve the prob-
lem of surface reconstruction by fitting paths through the given curves. Experimental
results show the surface reconstruction of smooth endometrial tissue shapes generated
from MRI slices.

1 Introduction
The problem of surface reconstruction from 3D images has been widely studied because of
its importance in different applications such as medical imaging, computer graphics, me-
chanical simulations, virtual reality, etc. Particularly, the reconstruction of surfaces from
a set of 3D point clouds is important since they are frequently used in medical imaging
and computer graphics [3]. For example, one can use a variational formulation using PDEs
and compute the solution as an implicit surface, which is usually the zero level set of a
sufficiently smooth function [16]. Here, the resulting surface construction is controlled by
adding physics-inspired constraints depending on geometry or external forces [16]. How-
ever, when the observed data is acquired as 2D image slices, one can often find convenient
planar boundary representations of objects of interest. Then one needs to perform surface re-
construction by computing an optimal fitting between the boundaries and taking into account
their parametrization and the non-linearity of their spatial evolution [6].

In several medical applications, real data can be partially extracted by an expert (man-
ually), and then used to validate medical image processing algorithms. While modern MR
reconstruction algorithms allow the acquisition of full 3D anatomies, often times due the
resolution of the imaging device, or position of the anatomical object in the scanner the 3D
surface reconstruction during the post-processing phase may be difficult. In such cases the
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physician expert usually traces boundaries on a subset of 2D image slices. The difficulty
then lies in generating a surface reconstruction out of the sequence of image slices.

To overcome this issue, we formulate the problem of reconstructing a surface from an
acquired set of indexed curves as a smooth path fitting scheme on the shape space. Path
fitting on manifolds has been previously addressed in the literature with different approaches
and for various purposes. Generic path fitting methods on manifolds include splines on
manifolds [10], rolling procedures [7], subdivision schemes [4], gradient descent [13], and
geodesic finite elements [14]. Interpolation of rotations (where the manifoldM is the spe-
cial orthogonal group SO(3)) is useful in robotics for motion planning of rigid bodies and in
computer graphics for the animation of 3D objects [11]. Although the standard reconstruc-
tion approaches produce valid correspondences between given data, there is still a lack for
smoothness, which requires arbitrary smoothing schemes.

The main advantages of our proposed path fitting methods are: i) the fitting formulation
takes into account the fact that the given data is available as a set of indexed spatial level-
set curves and finds the intermediate missing curves under a smoothing constraint, ii) the
resulting cylindrical surfaces have a natural parametrization as a path on curves space, and
iii) they benefit of an attractive elastic metric to compute the evolution and the deformation
along the given level-set curves and between them.

2 The Path Fitting Problem on the Euclidean Space
Since the acquired set of 2D curves is an ordered sequence, the main idea here is to connect
them as a smooth path of curves to form a continuous surface. Let p0, p1, p2, . . . , pn be an
indexed set of curves. Our goal is to construct a smooth piecewise-Bézier path η : [0, tn]→
M interpolating the n+ 1 data points pi = η(ti) ∈ M at time instants ti for i = 0, . . . ,n.
In [2, 6], methods to do so were proposed for a general Riemannian manifoldM. In both
works, the strategy was to formulate a C1 piecewise-Bézier interpolation problem for the
case whereM reduces to a Euclidean space, then obtain equations that govern the control
points of the sought Bézier curves, and finally generalize those equations to Riemannian
manifolds. In this section, we briefly summarize the Euclidean foundations of two of these
methods, referring the reader to [6] and [2] for details. Then, in the next section, we work
out concretely the extension of the two methods to the specific case where the manifoldM
is the shape space of curves.

In the Euclidean case we consider n+ 1 data points (p0, . . . , pn) in Rm and assume that
n≥ 3 for non trivial cases. The C1 piecewise-Bézier path η is defined as:

η(t) =


β2(t; p0,b−1 , p1) t ∈ [0,1]
β3(t− (i−1); pi−1,b+i−1,b

−
i , pi) t ∈ [i−1, i], i = 2, . . . ,n−1

β2(t− (n−1); pn−1,b+n−1, pn) t ∈ [n−1,n],
(1)

where βk denotes a Bézier curve of degree k [5] and (b−i ,b
+
i ) are control points on the left

and on the right of the data point pi, i = 1, . . . ,n−1. The control points are chosen such that
the mean square acceleration∫ 1

0
(‖β̈2(t; p0,b−1 , p1)‖2 +

n−2

∑
i=1
‖β̈3(t; pi−1,b+i−1,b

−
i , pi)‖2 +‖β̈2(t; pn−1,b+n−1, pn)‖2)dt (2)

is minimized in Rm.
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Solution 1. In this method, we assume that the control points (b−i ,b
+
i ) depend on their

closest interpolation point pi. We fix the velocity directions vi at pi and optimize their mag-
nitude αi, so the control points now read:

b+i = pi +ξ αivi i = 1, . . . ,n−1 (3)
b−i = pi−ξ αivi i = 1, . . . ,n−1 (4)

where ξ = 3/2 for b−1 and b+n−1 and 1 otherwise. Minimizing Eqn. 2 turns then into solving
a tridiagonal linear system of the form Mα = z. Control points are then recovered following
Eqn. 3 and Eqn. 4 (see [6] for more details).

Solution 2. Here, we assume that the control points b+i (on the right of pi) depend on the
control points on the left b−i . The minimizer of Eqn. 2 is given as the critical point of its
gradient, which leads to a linear system of the form AX = CP including b−i only as X =
[b−1 , . . . ,b

−
n−1]

T ∈ Rn−1×m and P = [p0, . . . , pn]
T ∈ Rn+1,m. A and C are tridiagonal matrices

of coefficients (see [2] for details) with A invertible which makes the solution unique:

X = A−1CP. (5)

3 The Path Fitting Problem on the Shape Space
We now generalize the path fitting problem of section 2 to the shape space. It is worth noting
that the solutions presented above can be expressed on some general Riemannian manifolds
embedded in a Euclidean space E [2, 6]. For such a generalization, one needs to define and
compute the exponential map, the logarithmic map and an appropriate metric [1, 12].

3.1 Shape Analysis of Closed Planar Curves
This section summarizes the Riemannian framework for elastic shape analysis of closed
planar curves. This general framework results in metrics and models that are invariant to ar-
bitrary rotation, scaling, translation, and re-parameterization of individual curves. For more
detailed information, we refer the reader to [8]. In this work, rotation, translation, and scal-
ing are not considered as nuisance variables because they are derived from real data. We will
assume that an arbitrary level-set curve is represented by its parameterization βi, its length
li, and its starting point β (0). As li and β (0) belong to Euclidean spaces, their interpolation
is quite straightforward. In the following section, we will focus on the interpolation between
βis.

3.1.1 Representation of Curves

We represent the shape of a two-dimensional parameterized curve β , β : [0,1]→ Rn by a
function [8, 15] q : [0,1]→ Rn as

q(s) =
β̇ (s)√
||β̇ (s)||Rn

∈ Rn. (6)

This vector valued function q is the tangent vector normalized by the square-root of the in-
stantaneous speed along the curve and is a local descriptor of the geometry of the curve. The
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original curve β can be reconstructed using β (s) = β (0)+
∫ s

0 ||q(t)|| q(t) dt. Since this oper-
ation maps the shape space representation of a curve to its representation in a system with co-
ordinates, we denote it as coord(q), i.e. β = coord(q), given β (0). The scale invariant shape
representation is given by normalizing the function q by its magnitude as q√∫ 1

0 (q(s),q(s))R2 ds
.

The norm in the denominator is a Euclidean norm, and (·, ·)R2 is the standard Euclidean
inner-product in R2. Throughout this section, the function q refers to this scale-invariant
form unless indicated otherwise. Due to this unit-scaling constraint, the space of all transla-
tion and scale-invariant shapes becomes a Hilbert sphere denoted by Q. Formally, the space
Q is defined as

Q≡
{

q ∈ L2|
∫ 1

0
(q(s),q(s))R2ds = 1,q(s) : [0,1]→ R2

}
. (7)

Ultimately, we are interested in analyzing curves in a fully invariant manner, i.e. we
would like to consider an invariant space of shapes given by the quotient space modulo
shape-preserving transformations including reparameterizations. This invariance to repa-
rameterization is the most interesting shape-preserving transformation and facilitates elastic
shape analysis of curves. Reparameterization gives rise to a change in speed of the curve
without changing its shape. It is represented by a non-linear differentiable map (with a dif-
ferentiable inverse) also referred to as a diffeomorphism, which is defined as γ ∈ Γ, where
Γ= {γ : [0,1]→ [0,1],γ(0)= 0,γ(1)= 1,γ is a diffeomorphism}. One can specify the action
of reparameterization of a shape q by γ denoted by

q · γ = ( q◦ γ)
√

γ̇. (8)

3.1.2 Shape Space of Curves

The elastic shape space of open curves is defined as the quotient space,

So =Q/(Γ). (9)

This framework also allows us to represent closed boundaries (β : [0,1]→R2) of objects by
imposing an additional closure constraint on the curves. This closure constraint is written as∫ 1

0 β̇ (s)ds = 0 and is specified as
∫ 1

0 q(s)||q(s)||ds = 0 in terms of the shape function. One
can then define the set of closed representations as the pre-shape space of the curve shapes
and denote it by C ≡ {q|q ∈Q,

∫
q(s)||q(s)||ds = 0}. This pre-shape space C is a subset of an

infinite-dimensional unit-sphere as a result of the scale-invariant constraint and represents all
closed elastic curves. The elastic shape space for closed curves is then given by the quotient
space Sc = C/(Γ). Next, we present geometric properties on Q and we refer to [15] for
equivalent tools on Sc. An important geometrical construct for the statistical analysis of the
shapes is the definition of a tangent space. The tangent space of Q is given by

Tq(Q)≡
{

f ∈ L2| f ⊥Q
}
. (10)

We equip the tangent spaces ofQ with a smoothly varying Riemannian metric that measures
infinitesimal lengths on the pre-shape space. This inner product is first defined generally on
L2 and then induced on the tangent space ofQ. Given a pair of tangent vectors f ,g ∈ Tq(Q)
the metric is defined as,

〈 f ,g〉=
∫ 1

0
( f (s),g(s))R2ds. (11)
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Since this metric is fully invariant to reparameterizations, it is an elastic metric on the shape
space of curves.

3.1.3 Exponential Map and Inverse Exponential Map on the Shape Space

To enable interpolations between two curves, we use geodesics or shortest paths between
them on the shape space. A fundamental ingredient for computing geodesics is the formula-
tion of the exponential map which traces the path of a tangent vector at a given point. Thus
given a shape q1 and a tangent vector f ∈ Tq(Q), the exponential map of f yields a new
shape q2 and is defined as

expq1
( f ) = q2 = cos(‖ f‖)q1 + sin(‖ f‖) f

‖ f‖
, (12)

where ‖ f‖ = 〈 f , f 〉. The shortest path following this tangent vector f and connecting the
shapes q1 and q2 is also known as the geodesic. The length of the geodesic determines an
elastic quantitative distance between two shapes, whereas the full geodesic path achieves a
continuous elastic deformation between them. The geodesic is computed under the Rieman-
nian metric defined in Eqn. 11. Since the space Q is a Hilbert sphere, the geodesic between
two points (shapes) q1 and q2 can be expressed analytically as,

χt(q1; f ) = cos
(
t cos−1〈q1,q2〉

)
q1 + sin

(
t cos−1〈q1,q2〉

)
f , (13)

where t ∈ [0,1] and the initial tangent vector f ∈ Tq1(Q). Conversely, given two shapes q1
and q2, the inverse exponential map (also known as the logarithmic map) allows the recovery
of the tangent vector f between them, and is given by

exp−1
q1
(q2) = f =

cos−1 〈q1,q2〉
sin(cos−1 〈q1,q2〉)

(q2−〈q1,q2〉q1) . (14)

From Eqn. 13, the velocity vector along the geodesic path χt is obtained as χ̇t . It is
also noted that χ0(q1) = q1, and χ1(q1) = expq1

( f ) = q2. The geodesic is computed using
a path-straightening method [8, 15] that initially connects the two points q1 and q2 using an
arbitrary path in Q and then iteratively straightens it to form the shortest path.

The optimal reparameterization γ∗ at each step can be efficiently found as the minimizer

γ
∗ = argmin

γ

(∫ 1

0

[
||q1− γ ·q2||2

]
ds
)
, (15)

and is numerically solved using dynamic programming. The geodesic path is then given by
substituting q2 by q2 · γ∗ in Eqn. 13, and the tangent vector is given by χ̇0.

Given the above tools for constructing geodesics and inverse exponential maps on the
shape space, we outline their usage in reconstructing cylindrical surfaces from curve shapes
next.

3.2 Cylindrical Surfaces as Smooth Paths on the Shape Space
Again, given an indexed set of curves (p0, p1, p2, . . . , pn) in R2, we represent their shapes as a
set of indexed shape functions (q0,q1,q2, . . . ,qn) in the shape spaceQ. The manifold equiv-
alent form of b+i = pi +αi(b−i − pi) is then given by the geodesic Eqn. 13 b+i = χt(qi;αi fi),
where qi is a shape and fi = exp−1

q1
(b−i ) ∈ Tqi(Q) is the initial velocity of its geodesic satis-

fying χ1(qi; fi) = b−i .
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Solution 1. In the first method, given the velocity directions by the tangent vectors vi ∈
Tqi(Q), the entries of the matrix M and the vector z are generated as follows:

M(1,1:2) =
[
12〈v1,v1〉 3〈v2,v1〉

]
M(i,i-1:i+1) =

[
〈vi−1,vi〉 4〈vi,vi〉 〈vi+1,vi〉

]
(16)

M(n-1,n-2:n-1) =
[
3〈vn−2,vn−1〉 12〈vn−1,vn−1〉

]
and

z(1) = 3〈exp−1
q1
(q2),v1〉−2〈exp−1

q1
(q0),v1〉

z(i) = 〈exp−1
qi
(qi+1)− exp−1

qi
(qi−1),vi〉 (17)

z(n-1) = 3〈exp−1
qn−1

(qn−2),vn−1〉−2〈exp−1
qn−1

(qn),vn−1〉

As each entry is scalar, the magnitudes αi will remain a vector of scalars and the control
points are recovered using χt(qi;±αivi) = b±i .

Solution 2. The second method is generalized as follow: for each row i of (5), the rest of
the data points are mapped to the tangent space Tqi(Q) at qi, i.e. P̃ = [ f i

1, . . . , f i
n] ∈ Tqi(Q)n

with f i
k = exp−1

qi
(qk). We denote x̃i ∈ Tqi(Q) the solution on the tangent space and b−i =

χ1(qi; x̃i) ∈Q its transported image by the exponential map on Q.
For both solutions, the piecewise-Bézier path is reconstructed on the shape spaceQ with

the De Casteljau algorithm generalized to manifolds [9] for a certain discretization rate.
Since each point of this discrete path belongs to Q, its coordinate representation is obtained
as coord(η(t)), ∀t.

4 Experimental Results
In this section, we apply the above methods to reconstruct endometrial tissue surfaces from
MRI Slices. Axial T2 MR slices with thickness of 5 mm, repetition time of 44083−49397
ms were acquired with a 1.5 Tesla GE Optima GEM Suite. MR imaging was performed
in order to provide superior anatomical details. In our experiments, the MR images had
an average size of 400× 400× 5 with a voxel resolution of 0.5× 0.5× 5 mm3. An expert
identified and selected MR slices and then extracted level-set curves. The segmentation was
performed by a pelvic radiologist and then confirmed with a gynaecologist.

We present two examples of cylindrical surface reconstruction and compare the fitting
paths on shape space obtained with (i) the solution from [2], (ii) the solution from [6] and
(iii) a piecewise-geodesics method. The level-set curves were segmented manually by an
expert from MRI slices. The selected zones of interest are planar closed curves with constant
z-value at each level. Examples of extracted level-sets are shown in figures (1 and 2)(a).

To summarize, we reconstruced the smooth endometrial surface SMRI in three steps. First,
a radiologist was asked to select different slices (from 4 to 7) and segment curves as bound-
aries of an interest zone on each slice. Second, we represented each curve as a point on the
shape manifold. Note that we aligned and fixed the starting point of each curve and computed
its length. The given time indexes, that have spatial meaning in this case, correspond to the
z-values for each curve from its corresponding slice. Third, thanks to a modified version of
[15] to compute a geodesic path between any two points on shape space, we applied the three
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methods to construct SMRI , for each example. The solution from [2] corresponds to the first
two rows, [6] to the rows 3 and 4 and piecewise-geodesics to rows 5 and 6. To give an idea
about the quality of the reconstructed surface, we show an example of SMRI (b) reconstructed
from a set of curves (a), the norm of the fitting path’s velocity ‖η̇(t)‖ (c), the norm of its
acceleration ‖η̈(t)‖ (d) , the Laplacian map ‖∆SMRI‖ (e), the norm of the gradient along the
radial curves ‖∇rSMRI‖ (f), the norm of the gradient along the circular curves ‖∇θ SMRI‖ (g),
and ‖∇r,θ SMRI‖ as a function (2D map) of (r,θ) (h).

One can observe that the three methods are interpolating the given level-set curves as key
points on shape space (see figures 1 and 2, left column). Note that the piecewise-geodesic
method is continuous but not differentiable at the key points. Moreover, its resulting path has
a low velocity cost between any two original curves which is due to the geodesic connecting
them (minimizing the piecewise lengths). However, at the key points, the velocity and the
acceleration are very costly due to a big change of the geodesic direction and its rate of
change (see figure 1, (c) and (d)). Quite the contrary, the two other methods provide smooth
paths with smaller accelerations at the key points. More specifically, they lead to roughly the
same velocities but the acceleration cost is slightly smaller under the proposed method. The
later method leads to better reconstruction results as shown in (figure 1, (e) and (h)) with less
sharpness at data points (figure 2, (f) and (g)). In general, the proposed method succeeds to
generate smooth fitting paths on Riemannian manifolds for other interesting applications [2].

5 Conclusion
We have introduced an efficient method for cylindrical surfaces reconstruction. The input
data is obtained as a finite indexed set of level-curves, extracted manually from MRI, in the
case of endometriosis. The proposed method reconstructs the surface as a fitting paths on
the shape space of planar closed curves by overcoming the main numerical limitations of the
standard methods, i.e. the regularity and the preservation of the distance function.
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(a) (c) (d) (e)

(b) (f) (g) (h)

Figure 1: a: original curves, b: reconstructed surface SMRI , c: ‖η̇‖, d: ‖η̈‖, e: ‖∇2SMRI(r,θ)‖,
f: ‖∇rSMRI(r,θ)‖, g: ‖∇θ SMRI(r,θ)‖, and h: ‖∇SMRI(r,θ)‖. The two first rows correspond to the
solution from [2], the two next to the solution from [6] and the last two to piecewise-geodesics.
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(a) (c) (d) (e)

(b) (f) (g) (h)

Figure 2: a: original curves, b: reconstructed surface SMRI , c: ‖η̇‖, d: ‖η̈‖, e: ‖∇2SMRI(r,θ)‖,
f: ‖∇rSMRI(r,θ)‖, g: ‖∇θ SMRI(r,θ)‖, and h: ‖∇SMRI(r,θ)‖. The two first rows correspond to the
solution from [2], the two next to the solution from [6] and the last two to piecewise-geodesics.
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