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Abstract

While spatial symmetry of objects is studied frequently, the problem of measuring
temporal symmetry has rarely been explored. In this paper we present a mathematical
framework that utilizes a recently developed differential geometric approach to quantify
temporal reflection symmetry in movements from video data, in which human move-
ments are modeled as trajectories on Riemannian manifolds. Using the recently proposed
transport square-root velocity functions (TSRVF) representation, the amounts of tempo-
ral asymmetry in movements are decomposed into a spatial component and a temporal
one, each of which is quantified by an asymmetry score.

1 Introduction
Reflection symmetry exists ubiquitously in the world around us and attracts the attention of
humans and animals [6]. It is often found to be correlated with quality in both practical and
aesthetic senses [10], and is used by experts in various applications including scientific re-
search, medical diagnosis, among many others (e.g. [12]). However, research so far has been
mostly focused on spatial symmetry, both in computer vision and biomedical communities.
The problem of quantifying temporal symmetry has rarely been explored. We argue that
this is because of the lack of an advanced tool that can properly analyze temporal symmetry
from high-dimensional signals, and a framework for such analytical tools is presented in this
paper.

In current applications that do investigate temporal reflection symmetry, it is mostly as-
sociated with one-dimensional signals, two synthetic examples of which are given in Figure
1. The signals can be read as, for example, speed profiles of the hand in a reaching task, and
temporally symmetric profiles represent the optimal movement strategy and are often ob-
served in young and healthy subjects. The quantification of temporal asymmetry in this case
can be used as an indicator of the motor performance decline due to aging [4]. Such quan-
tification is often obtained by comparing the rising and falling time of the one-dimensional
signal, where the rising and falling time is defined as the transition time between two thresh-
old values (20% and 80% of the peak value, for example).
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Figure 1: Temporal symmetry for one-dimensional signals

If a one-dimensional signal f (t) ∈R, t ∈ [0,1] meets the following criteria: f is continu-
ous, f (t), t ∈ [0,1] consists of a monotonically increasing part and a monotonically decreas-
ing part, and f (0) = f (1), for any point t ∈ [0,1], ∃ t ′ ∈ [0,1], where f (t ′) = f (t) and t ′ 6= t
(except for the minimum or maximum point). In other words, exact spatial correspondences
between points in f can always be obtained, thus the only asymmetry in f (if there is any)
comes from the temporal component.

The same does not hold true for higher-dimensional signals, in which exact spatial cor-
respondences cannot always be obtained. Figure 2 gives several synthetic examples of two-
dimensional signals representing a reaching movement. The first part of the movement is
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Figure 2: Synthetic examples of 2D signals showing that temporal asymmetry consists of
both spatial and temporal discrepancies (In each subfigure, the blue solid line shows the
sequence of samples P(t) = (x,y) in x− y− t space, whereas the gray dotted line shows the
actual spatial trajectory on the x−y plane. Dots are data points sampled at uniform intervals
and larger gray dots represents points that are more recent).
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given in (a), and the second part is in (b), (c), (d), or (e). It can be seen that exact spatial
correspondences can only be obtained in the composite signal of (a) + (b), (a) + (c), or (a)
+ (d), but not in (a) + (e). The difference between two parts in the former cases are solely
caused by different moving rates, while the difference in (a) + (e) is caused by spatial dis-
crepancies. By using the one-dimensional examples in Figure 1 as analogies, we can say that
signal (a) + (b) is similar to the ideally symmetric signal in Figure 1(a), while signals (a) +
(c) and (a) + (d) are similar to the asymmetric signal in Figure 1(b), and (a) + (e) presents
a new type of asymmetric signals that do not exist in one-dimensional space. Apparently
it is also possible to have both temporal and spatial discrepancies between two parts in one
signal. If we simply compare the sequences of samples between two parts, we will not be
able to differentiate the two different types of asymmetry. However, since the two types
are caused by different mechanisms, there are benefits in separating them. For example, in
stroke rehabilitation, spatial alignment and speed variation are often computed separately to
give patients more customized guidance [3].

As far as we know, there were few prior works that investigated the problem of quantify-
ing temporal reflection symmetry, except for one-dimensional signal applications discussed
above. For spatial symmetry, [18] proposed an early approach for automatically quantifying
the degree of spatial symmetry of 2D shapes, by comparing a shape with its nearest sym-
metric counterpart. Some more recent papers presented more generalized frameworks for
2D shapes and 3D surfaces using various shape representations and optimization methods
[5, 8, 9, 11]. Moreover, [7] utilized 2D spatial asymmetry quantifications to construct a
shape descriptor that can be used for retrieval applications. Our method is similar to them in
the sense that we also use the distance between a trajectory and its reflected version as a mea-
sure of asymmetry, and we use a trajectory aligning method that bears some similarity with
the elastic deformation method used in [11]. However, our work differs in that we decom-
pose temporal asymmetry into two components, which do not exist for spatial symmetries.
Also our method analyzes movements as trajectories on Riemannian manifolds, while prior
works investigated shapes/surfaces in 2D/3D Euclidean spaces.

2 Mathematical framework

There have been significant advances in applying differential geometry methods in computer
vision in recent years. Non-Euclidean features have been developed and it has been demon-
strated that they can often achieve better performances in various applications. A human
action can generally be considered as a trajectory on a Riemannian manifold M with a Rie-
mannian metric 〈·, ·〉. For example, at any time instance, the human body can be represented
as a shape silhouette, thus a point on the Grassmann manifold [14], or the combination of
skeletal joints as a point in a Lie group SE(3)× . . .×SE(3) [17]. The whole action is there-
fore a trajectory of such points on M. Using similar notations as in [13], let α : [0,1]→M
denote a trajectory on M and we assume that α is smooth. LetM denote the set of all such
trajectories, and A :M→ R+ be a function that maps a trajectory to a non-negative real
number which represents an asymmetry score for the input trajectory. Also, let R denote the
temporal reflection mapping, i.e. R(t) = 1− t, t ∈ [0,1]. The asymmetry score function A
should have the following properties:

A(α) = 0, i f α = α ◦R (1)
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A(α) = A(α ◦R) (2)

For the spatial component of asymmetry (denoted as As) discussed in Section 1, it should
have the additional property

As(α) = As(α ◦ γ) (3)

where γ ∈ Γ̃ = {γ : [0,1]→ [0,1]|γ(0) = 0,γ(1) = 1,γ is nondecreasing, absolutely continu-
ous}.

Here γ is a warping function and α ◦ γ is a trajectory that follows the same path of α

on the manifold but has a different evolution rate. Thus Eq. (3) implies that the difference
in evolution rates in different parts of α is not reflected in the quantification result of As.
Therefore As only quantifies the spatial component of the discrepancy between α and α ◦R.

Using the transport square-root velocity functions (TSRVF) representation recently pro-
posed in [13], the TSRVF representation h of a trajectory α is a parallel transport of a vector
field to a reference point c ∈M:

hα(t) =
α̇(t)α(t)→c√
|α̇(t)|

(4)

and the distance between two TSRVFs is

dh(hα1 ,hα2) =
(∫ 1

0

∣∣hα1(t)−hα2(t)
∣∣2dt
)1/2

(5)

The equivalent class of hα is defined as:

[hα ] = {hα◦γ |γ ∈ Γ̃} (6)

where Γ̃ is the same as defined above.
We define the spatial component of our asymmetry scores (As) as the shortest distance

between the equivalent classes of hα and hα◦R:

As(α) = ds([hα ], [hα◦R]) = inf
γ1,γ2∈Γ̃

(∫ 1

0

∣∣∣∣hα

(
γ1(t)

)√
γ̇1(t)−hα◦R

(
γ2(t)

)√
γ̇2(t)

∣∣∣∣2dt
)1/2

(7)

Here we prove that the function As defined in Eq. (7) has the desired properties defined
in Eqs. (1-3):

First, if α = α ◦R, As(α) = ds([hα ], [hα◦R]) = ds([hα ], [hα ]) = 0.
Second, As(α ◦R) = ds([hα◦R], [hα◦R◦R]) = ds([hα◦R], [hα ]). Because ds is a proper dis-

tance [13], ds([hα◦R], [hα ]) = ds([hα ], [hα◦R]), thus As(α ◦R) = As(α).
Third, for any γ ∈ Γ̃, As(α ◦γ) = ds([hα◦γ ], [hα◦γ◦R]). Since R◦γ ◦R(t) = 1−γ ◦R(t)∈ Γ̃,

∃γ ′ ∈ Γ̃,s.t.R◦ γ ′ = γ ◦R. Thus As(α ◦ γ) = ds([hα◦γ ], [hα◦R◦γ ′ ]) = ds([hα ], [hα◦R]) = As(α).

It is also noteworthy that since Ṙ(t) =−1,

hα◦R =−hα ◦R (8)

Thus we can equivalently define As as:

As(α) = ds([hα ], [−hα ◦R]) = inf
γ1,γ2∈Γ̃

(∫ 1

0

∣∣∣∣hα

(
γ1(t)

)√
γ̇1(t)+hα

(
1− γ2(t)

)√
γ̇2(t)

∣∣∣∣2dt
)1/2

(9)
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In practice, instead of finding two warping functions γ1 and γ2, we can find a γ∗ ∈ Γ =
{γ : [0,1]→ [0,1]|γ(0) = 0,γ(1) = 1,γ is a diffeomorphism} that aligns hα◦R with hα , i.e.
a warping function that minimizes dh(hα ,hα◦R◦γ∗) over Γ. The optimization is performed
using the dynamic programming (DP) algorithm [2] and the time complexity is O(N2), N
being the number of discrete samples in the interval [0, 1].

We denote γ∗(hα1 ,hα2 )
as the optimal warping function described above that aligns hα2 with

hα1 , and the temporal component of our asymmetry scores is defined as:

At(α) =
1
2

∫ 1

0

(∣∣γ̇∗(hα ,hα◦R)(t)−1
∣∣+ ∣∣γ̇∗(hα◦R,hα )

(t)−1
∣∣)dt (10)

Intuitively, At measures the amounts of deviation of γ∗s from the ideal warping function
γ(t) = t (i.e. in cases where no warping is needed for optimal matching). It is apparent that
At also meets the two criteria for asymmetry measures in Eqs. (1) and (2).

3 Experimental results
We test our proposed method on the UMD common activities dataset [16]. The main reason
we choose this dataset for our preliminary experiment is because there are a decent number
of action repetitions (10) for each unique combination of actor and action. The dataset is
also suitable for visualization of actions and illustration of results.

Each action sample of the dataset is represented as a sequence of shapes, extracted from
the actor’s silhouettes. Each shape is represented by an m× 2 matrix L that contains the
positions of m 2D points, uniformly sampled on the contour of the shape. The positions of
the points are normalized so that the centroid of the m points is (0, 0), and the norms of
column vectors of L are 1. The subspace spanned by the column vectors of L is invariant to
affine transforms, and can be considered as a point on a Grassmann manifold [15]. Therefore,
an action sample is a trajectory on a Grassmann manifold. We refer interested readers to [15]
and [1] for more details on the properties of the manifold.

 1:
 Pick up object

 2:
 Jog in place

 3:
 Push

 4:
 Squat

 5:
 Wave

 6:
 Kick

 7:
 Bend to the side

 8:
 Throw

 9:
 Turn around

 10:
 Talk on phone

Figure 3: Actions whose temporal reflection symmetries are quantified (from the UMD com-
mon activities dataset)
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We apply Eqs. (7) and (10) to all the action samples in the dataset. The mean and standard
deviation values of asymmetry scores are summarized in Figures 4 and 5. For comparison,
the asymmetry scores before warping are defined as dh(hα ,hα◦R), where dh is defined in Eq.
(5). For illustration purposes, only the first 79 frames (out of 80) of each action sample are
used for calculating asymmetry scores and illustration. Figure 3 illustrates the actions whose
asymmetries are quantified. For each action class, the one sample that has the closest As(α)
to the class mean is illustrated in Figure 3.

From the results shown in Figures 4, we can see that after applying our method, the
actions can approximately be divided into two categories: the more temporally symmetric
ones (“Pick up object”, “Jog in place”, “Squat”, “Wave”) and the less temporally symmetric
ones (“Push”, “Kick”, “Throw”, “Turn around”, “Talk on phone”), while action “Bend to the
side” lies in the middle. Had we simply calculated the asymmetry score as dh(hα ,hα◦R) (as
shown in Figure 4(a)), they would not be distinguishable. Figure 5 shows that the actions

 Action
1 2 3 4 5 6 7 8 9 10

1

1.1

1.2

1.3

1.4

1.5

 (a) Asymmetry scores
before warping

 Action
1 2 3 4 5 6 7 8 9 10

1

1.1

1.2

1.3

1.4

1.5

 (b) Asymmetry scores (spatial component)
after warping

Figure 4: Means and standard deviations of asymmetry scores before and after warping
(spatial components)

 Action
1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

 Asymmetry scores (temporal component)
after warping

Figure 5: Means and standard deviations of asymmetry scores (temporal components)
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have similar degrees of rate variation (reflected by the temporal component of asymmetry
scores), except for the action of “Jog in place”, which has a lower degree of rate variation,
and the difference is significant compared with a few other actions such as “Pick up object”
or “Squat”.

To test the sensitivity to segmentation of these actions, we rerun the same algorithms
using only the first 73 frames of each action sample instead of 79 (can be illustrated by re-
moving the last column of shapes in Figure 3). The results remain almost the same, showing
that our method is robust to small variation in action segmentations.

4 Summary
In this paper we have presented a framework for quantifying temporal reflection symmetry
of movements by decomposing the amount of asymmetry into a spatial component and a
temporal one. We consider movements as trajectories on Riemannian manifolds, and use
TSRVF to properly align a movement with its temporal reflection. The use of differential
geometric methods has helped improve the results of quantification.
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