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Abstract

This paper develops a framework for shape analysis of tree-like structures with the
following common features: (1) a main branch viewed as a parameterized curve in R3,
and (2) a random number of secondary branches, each one of them a parameterized
curve in R3, emanating from the main branch at arbitrary points. In this framework,
comparisons of objects is based on shapes-scales-orientations of the curves involved,
and locations and number of the side branches. The objects are represented as compos-
ite curves made up of: a main branch and a continuum of side branches along the main
branch with each branch being a curve in R3 itself (including the null curve, or zero
curve). Extending the previous work on elastic shape analysis of Euclidean curves, the
space of these composite curves is endowed with a natural Riemannian metric, using
the SRVF representation, and one computes geodesic paths in the quotient space of this
representation modulo the re-parameterization function. As a result, appropriate geomet-
ric structures are optimally matched across trees, and geodesic paths show deformations
of main branches into each other while either deforming/sliding/creating/destroying the
side branches. We present some preliminary results using axonal trees taken from the
Neuromorpho database.

1 Introduction
Shape analysis of objects is an important problem in many disciplines, including vision,
biology, medicine, and manufacturing. There have been many efforts that study shapes of
points sets, curves, surfaces, and other objects that have fixed topologies [5, 9, 17, 22]. These
efforts often have a common theme – they start by choosing mathematical representations of
objects and then quotient out shape-preserving transformations, such a rigid motions, global
scaling, and parameterizations. In this paper we consider structures that can differ in topol-
ogy also, in addition to their geometries. Specifically, we are interested in analyzing trees
– configurations where a stem branches into side branches, side branches into tertiary struc-
tures, and so on. Such trees are important in a variety of scientific applications, including
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Figure 1: Left: Three examples of simple axon trees taken from Neuromorpho database.
Right: A schematic of an axonal tree with the main branch and three side branches.

phylogeny [4], axon morphology [14], road networks, blood vessels, epidemiology models,
etc. The properties of interest in a tree are: (1) geometries (size, shape, orientations) of dif-
ferent curves, including the main and the side branches, and (2) the locations and number of
the side branches. There is a great need for tools that allow us to: (1) compare such trees in
order to quantify their differences in terms of these features, (2) study statistical variability
in a set of trees sampled from a population, e.g. by computing their means and variances,
and (3) develop statistical models to capture the observed variability.

While a wide variety of topological structures can be studied in this context, we will focus
on a specific family that is motivated by our interest in axonal trees [13, 14]. The topologies
of these trees are characterized by a main branch – a stem or a backbone – and a number of
side branches connected sequentially to a main branch. (There are tertiary branches too but
they are ignored in this paper.) We will assume the availability of data in the following form.
The main branch is represented as a parameterized curve β0 : [0,1]→ R3; for the arc-length
parameterization of β0, we get the connection points – parameter values along β0 – where the
side branches are connected, as {t1, t2, . . . tn} ⊂ [0,1], with n being a variable itself. For each
i= 1,2, . . . ,n, βi represents a side branch and is a parameterized curve in R3 itself. Due to the
connectivity of side branches with the main sbranch, we have β0(ti)= βi(0). LetB denote the
set of absolutely continuous, parameterized curves in R3. A mathematical representation for
an axonal tree is: {β0,(t1,β1),(t2,β2), . . . ,(tn,βn)}, where 0 < t1 < t2... < tn < 1, βi ∈ B.
Several examples of trees are shown in Fig. 1, along with a schematic in the rightmost panel.

1.1 Past Literature

Despite restricting to simpler tree-like structures, the analysis still remains difficult. The
main difficulty comes from presence of both geometrical and topological variability in these
structures. The past work on shape analysis, especially that relying on differential geometry,
is usually restricted to objects with fixed topology – closed planar curves, spherical surfaces,
etc. On the other hand, the past works on tree analysis often ignore the geometry (shapes)
of the branches and focus only on the topology. Methods such as tree-edit distance [18], and
its variations, simply focus on the numbers and locations of side branches, considering them
as binary choices (branch or no branch). The shapes of of branches have important implica-
tions in scientific applications, and cannot be simply discarded in structural comparisons. To
take into account both topological and geometrical variability requires advanced mathemat-
ical tools. Furthermore, the need for automatic matching of features, both geometrical and
topological, makes this problem even harder.

There is substantial work in elastic shape analysis of curves in Euclidean spaces [17].
Its extension to annotated curves, where the analysis relies not only on the geometry of
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curves but also on annotations defined as finite-dimensional functions defined along those
curves [11], is closely related to the approach developed in the current paper. This technique
has been used in the past to study colored curves where both shapes and colors are used
in matching and comparisons. A similar idea was used to study protein backbones as with
the location of side chains treated as annotations [12]. Mottini et al. [13, 14] was the first
paper to apply this framework to axon morphology, viewing the side branches as discrete
annotations along the main branch.

1.2 Our Approach: Composite Trajectories
Our approach here is to represent each tree by a trajectory in an infinite-dimensional spaceP ,
denoting a certain set of parameterized curves in R3. More precisely, a trajectory consists of:
(1) a continuous sequence of seed points in R3 forming the main branch β0 and (2) attached
to each seed point is a side branch (a curve) represented by an element of L2([0,1],R3). Al-
though, in practice, a tree has only a finite number of side-branches, we assume a continuum
of side-branches in order to facilitate development of underlying theory. This is not absurd
since a singleton point can also be viewed as a constant curve, or a null or a trivial curve, a
valid element of the curve space, thus providing trivial side branches where the real one do
not exist. These composite trajectories are then compared using a novel Riemannian struc-
ture that allows for elastic matching of features across trajectories. In particular, we use the
elastic metric to register the main branches across trees, and to deform the shapes of these
composite trajectories from one to another. The latter part implies that both the main and the
side branches are deformed. Due to elastic metric, a combination of stretching and bending
is used to match points across main branches. In cases where a side branch of one trajectory
is matched to a trivial curve on the other trajectory – we will see a birth or an annihilation of
a side branch along the geodesic. Otherwise, we will expect a deformation of a side branch
of one trajectory to its matched counterpart on the other trajectory.

The rest of this paper is laid out as follows. Section 2 summarizes past work on elastic
shapes analysis of Euclidean curves and its extension to trajectories in Hilbert spaces and
their quotient spaces. Section 3 introduces a mathematical representation of trees as com-
posite curves and lays out the techniques for computation of geodesics between arbitrary
trees. Section 4 presents some preliminary experimental results and the paper ends with a
short summary in Section 5.

2 Background: Elements of Shape Theory
We are interested in shapes of trees made up of branches of different kinds. We will treat
all of these branches as parameterized curves, and will involve methods that allows us to
compare their shapes and other features. Although there are many choices for this, we will
use elastic shape analysis of Euclidean curves [10, 17]. While in traditional shape analysis
one is often not interested in the location, scale, and orientation of the curve, treating them as
nuisance variables, we are interested in shape, relative orientations and sizes of the branches,
and will include them in comparisons. The locations of these branches will also be included
in the analysis but separately.

Elastic Comparison of Curves in R3:
We briefly summarize ideas for elastic comparisons of curves in R3; for details please re-
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Figure 2: Elastic geodesic path and registration in shape-scale-and-orientation space. Left:
between two non-trivial curves. Right: between a non-trivial curve and a trivial curve.

fer to [10, 17]. Let B be the space of absolutely-continuous curves in R3. A single point
p ∈ R3, denoted as a constant curve β (t) = p, is also an element of B and is termed a
trivial curve. For any βi ∈ B, we study its shape using its square-root-velocity function
(SRVF) given by: qi(t) =

β̇i(t)√
|β̇i(t)|

. In case β̇i(t) = 0, then qi(t) = 0 also. Note that the

L2 norm of qi equals the length of the curve: ‖qi‖ =
√∫ 1

0 |qi(t)|2dt =
∫ 1

0 |β̇i(t)|dt = L[βi].
Let Γ be the set of all re-parameterizations of curves (weakly increasing, absolutely contin-
uous functions with appropriate boundary conditions). If a curve β is re-parameterized to
β ◦ γ , then its SRVF changes to (q ◦ γ)

√
γ̇ . The shape-scale-orientation of a curve is now

represented by the equivalence class [qi] = {(qi ◦ γ)
√

γ̇|γi ∈ Γ}. The set of all such equiv-
alence classes, L2([0,1],R3)/Γ, is called the shape-scale-orientation space. For any two
curves β1,β2 ∈ B, represented by their SRVFs q1,q2, respectively, the optimal registration
is given by: γ∗ = arginfγ∈Γ ‖q1− (q2,γ)‖. Consequently, the geodesic path between them
in L2([0,1],R3)/Γ is given by α(s) = (1− s)q1 + s(q2,γ

∗), and the geodesic distance is
‖q1−q2‖L2([0,1],R3)/Γ) = ‖q1− (q2,γ

∗)‖. Fig. 2 shows two examples of elastic geodesic be-
tween curves as elements of L2([0,1],R3)/Γ. In each case the left panel shows the geodesic
and the right panel shows the registration. The left example uses two curves with arbitrary
shapes and orientations. For the purpose of enhancing the display, these curves have been
scaled to unit length in the right panel. In case one or both of the curves are trivial, these
results still hold. If βi is a trivial curve, i.e. βi(t) = p ∈R3, for all t ∈ [0,1], then its SRVF is
a constant function with value 0 ∈ R3. The geodesic between βi and a nontrivial curve β j is
simply α(s) = sq j and geodesic distance is ‖q j‖. The right side of Fig. 2 shows an example
of a geodesic deformation going from a null curve to a nontrivial curve.

Elastic Comparison of Trajectories in L2([0,1],Rn)
The framework for comparing Euclidean curves can naturally be extended to compare and
analyze trajectories in function spaces, e.g. to L2([0,1],Rn). Even the computer implemen-
tations can be easily adapted to this case with minimal changes. This is because the L2 norm
on the function space, ‖ f‖2 =

∫ 1
0 | f (t)|2dt ≈ δ ∑

k
i=1 f (ti)2 = δ‖v‖2

Rk , where {ti} is a uniform
partition of [0,1] with bin size δ and v ∈ Rn×k is a matrix of values { f (ti)}. The L2 norm
between two functions is approximated using the Frobenious norm of the corresponding dif-
ference matrix. Thus, in practice, one can treat the given functions as elements of Rn×k, for
a large k, and then apply the setup for Euclidean curves.

Let X : [0,1]→ L2([0,1],Rn) be an absolutely-continuous trajectory in L2([0,1],Rn).
We can also view X as a mapping from [0,1]2 to Rn . For each t ∈ [0,1], the mapping X(t,τ)
denotes a curve in Rn with the parameter τ; t forms a continuous indexing of these curves.
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X1 X2 γ,γ∗

Figure 3: A simulated example of registration of two trajectories in L2([0,1],R): here X2 =
X1 ◦ γ . The original γ and the estimated γ∗ are shown in the right panel.

Define the SRVF of trajectory X according to:

qX (t,τ) =
dX(t,τ)

dt√∥∥∥ dX(t,·)
dt

∥∥∥
L2([0,1],Rn)

,where
∥∥∥∥dX(t, ·)

dt

∥∥∥∥
L2([0,1],Rn)

=

√∫ 1

0

∣∣∣∣dX(t,τ)
dt

∣∣∣∣2 dτ .

We can reconstruct X back from qX (up to a different translation for each t) using: X(t,τ) =∫ t
0 q(s,τ)‖q(s, ·)‖L2([0,1],Rn)ds. We assume that qX is an element of L2([0,1],L2([0,1],Rn)).

Since they are square-integrable maps, we can extend the standard L2 norm on curve space
to measure the differences between these maps:

‖qX1 −qX2‖
2 =

∫ 1

0
‖qX1(t, ·)−qX2(t, ·)‖

2dt =
∫ 1

0

(∫ 1

0
(qX1(t,τ)−qX2(t,τ))

2dτ

)
dt .

One can define a geodesic path between any two such SRVFs as a straight line: α : [0,1]→
L2([0,1],L2([0,1],R)), α(s) = (1−s)qX1 +sqX2 . In order to perform elastic analysis of tra-
jectories in L2([0,1],Rn), define the action of the re-parameterization group Γ on a trajectory
according to (X ,γ)(t) = X(γ(t)) (that is, (X(t,τ),γ(t))≡ X(γ(t),τ)). The corresponding ac-
tion on the SRVF of X is given by: (qX ,γ)(t) = qX (γ(t))

√
γ̇(t). To temporally register

any two trajectories X1 and X2, we take the associated SRVFs qX1 and qX2 , and solve the
following optimization problem:

inf
γ∈Γ
‖qX1 − (qX2 ◦ γ)

√
γ̇‖2 = inf

γ∈Γ

[∫ 1

0

(∫ 1

0

(
qX1(t,τ)−qX2(γ(t),τ)

√
γ̇(t)

)2
dτ

)
dt
]
. (1)

The infimum of this objective function provides a distance between the re-parameterization
orbits of qX1 and qX2 , and the geodesic equation mentioned above applies with qX2 replaced
by qX2(γ

∗(t))
√

γ̇∗(t). Fig. 3 shows an example of this idea for n = 1. The left panel shows
a path X1 in L2 – for small values of t, X1(t,τ) is a bimodal function (as a function of
τ) that turns into a unimodal function as t increases. We use a time-warping function γ

to create a new path X2(t,τ) = X1(γ(t),τ) shown in the second panel. Then, we use the
corresponding SRVFs to perform alignment via the dynamic programming algorithm. The
estimated optimal γ∗ is shown in the top right panel, drawn over the original γ . The high
degree of overlap implies a high accuracy in alignment of trajectories.
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3 Shape Analysis of Axonal Trees

Now that we have tools for representing and comparing individual curves, both in R3 and
L2([0,1],R3)/Γ, we return to the original problem of comparing shapes of trees. In this
section, we specify a mathematical representation of axonal trees as composite trajectories
and develop a framework for comparing the shapes of these composite trajectories. Our goal
is to develop a metric that can be used to: (1) compare the geometries of any two axonal
trees. i.e. quantify differences in their shapes, (2) find a geodesic path for morphing one tree
into the other, and (3) generate statistical summaries for any finite collection of trees. In this
paper we accomplish only the first two goals and leave the third for future.

3.1 Representing Trees as Trajectories

We start with representing a tree as a composite trajectory in a certain Hilbert space. We
take the viewpoint that attached to the main branch is a continuum of branches – at each
point t ∈ [0,1], the corresponding branch is a curve with a certain shape-scale-orientation
attributes.

Definition 1 (Composite Trajectory)
Define β : [0,1]2→ R3 to be a composite trajectory with the following components: (1) The
base curve β0 : [0,1]→ R3, defined by β0(t) ≡ β (t,0) is a parameterized curve in R3 and
denotes the main branch. (2) For each t, β (t)(τ) : [0,1]→ R3 defined by β (t)(τ) = β (t,τ) is
a parameterized curve in R3 representing a side branch attached to the main branch at the
point β0(t). In other words, β (t)(0) = β0(t) = β (t,0).

For each t, we consider the side branch β (t) to be smooth and represent its shape-scale-

orientation features by its SRVF: q(t)(τ)= dβ (t)(τ)
dτ

/√∣∣∣ dβ (t)(τ)
dτ

∣∣∣ ; this q(t) lies in L2([0,1],R3).

Note that given the SRVF q(t) and the starting point β0(t), we can reconstruct the origi-
nal side branch β (t) exactly. Therefore, there is no loss of information in representing the
original tree by the set

{(
β0(t),q(t)

)∣∣∣t ∈ [0,1]
}

. Denoting P ≡ (R3×L2([0,1],R3)), the

product space of all base points in R3 and SRVFs of all curves as elements of L2([0,1],R2).
We can impose a metric on it using a weighted sum of metrics on its components. For
any P1,P2 ∈ P , where Pi = (P(1)

i ,P(2)
i ) and P(1)

i ∈ R3, P(2)
i ∈ L2([0,1],R3), we define:

‖P1−P2‖P =

√
(1−λ )

∥∥∥P(1)
1 −P(1)

2

∥∥∥2

R3
+λ

∥∥∥P(2)
1 −P(2)

2

∥∥∥2

L2([0,1],R3)
. Here λ ∈ [0,1] is a pa-

rameter which controls the relative importance of the base point versus side branches. With
this notation, we can represent a tree as a smooth trajectory: Y : [0,1] → P,
Y (t) = (β0(t),q(t)); Y is a parameterized curve, or a trajectory, in P and we are interested
comparing such trajectories. (We assume Y to be smooth. If it is not, we can use a smoothing
technique to make it smooth.) Towards this goal, we will use the same idea as in the previ-
ous section, except the trajectories have an additional information in form of the base curve
β0. We form SRVFs of these trajectories according to: QY (t) = (

∥∥∥ dY (t)
dt

∥∥∥
P
)−1/2( dY (t)

dt ) =

(‖( dβ0(t)
dt , dq(t)

dt )‖P)−1/2( dβ0(t)
dt , dq(t)

dt ).
We will denote the space of such trajectories by Q≡ L2([0,1],P). The weighted metric

on P can be extended to impose a metric on spaceQ as follows. For any Q1,Q2 ∈Q, where
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Figure 4: Two examples of geodesic paths between trees represented as elements of Q).

Qi(t) = (Q(1)
i (t),Q(2)

i (t)) ∈ P (i.e. Q(1)
i (t) ∈ R3 and Q(2)

i (t) ∈ L2([0,1],R3)), define the
norm:

‖Q1−Q2‖2
Q =

∫ 1

0
‖Q1(t)−Q2(t)‖2

Pdt =
∫ 1

0

(
|Q(1)

1 (t)−Q(1)
2 (t)|2R3 +‖Q(2)

1 (t)−Q(2)
2 (t)‖2

L2

)
dt

=
∫ 1

0

(
|Q(1)

1 (t)−Q(1)
2 (t)|2R3 +

(∫ 1

0
|Q(2)

1 (t)(τ)−Q(2)
2 (t)(τ)|2R3 dτ

))
dt .

The geodesic path between any two trees, represented by Q1,Q2 ∈ Q is given by a straight
line: α : [0,1]→Q, α(s) = (1− s)Q1 + sQ2, For each time point s, α(s) ∈Q is a trajectory
inP; it can be written as α(s)(t) where t is the parameter of the trajectory inP . Furthermore,
for each s and t, α(s)(t) has two components (α(1)(s)(t),α(2)(s)(t)) where the first compo-
nent is a point in R3 denoting the starting point of a side chain and the second component
denotes the shape-scale-orientation of that side chain.

Figs. 4 shows two examples of the geodesic paths between two trees in Q. In case when
the corresponding points across the two trees – Q1(t) and Q2(t) – have non-trivial branches,
the geodesic will show one branch deforming into the other. When one of these branches
is trivial (length zero), and other is not, we see a growth (or attrition) from a point into a
branch. Finally, when both the branches are zero, then there is no change in the structure
along the geodesic.

3.2 Removing Reparameterization: Elastic Matching
An important strength of this approach is the ability to match curves using nonlinear regis-
trations. We discuss this idea in the context of comparing side branches first and then extend
the idea to the comparisons of full trees.

Matching of Side Branches: Each (indexed) side branch has been represented an an ele-
ment of the set P = R3×L2([0,1],R3). In order to study the shape-scale-orientation of this
curve, we need to remove the re-parameterization group Γ. Therefore, we will replace the
second component of the set P by L2([0,1],R3)/Γ to obtain: P̃ = R3×L2([0,1],R3)/Γ.
The distance on this space is given by:

‖P1−P2‖P̃ =
(
‖P(1)

1 −P(1)
2 ‖

2
R3 +‖P(2)

1 −P(2)
2 ‖

2
L2([0,1],R3)/Γ

)1/2
.

The geodesic paths between elements of P̃ are straightforward. The only change is in the
second component, L2([0,1],R3)/Γ, and geodesics there are given prevously.
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Figure 5: Top: Two trees which have the same main branch and same-shaped side branches,
but at different locations Geodesic between them using λ = 0.9 (left) and 0.999 (right).

Matching of Main Branch: The representation of a tree is modified to: Y : [0,1]→P̃, Y (t)=
(β0(t), [q(t)]), where β0(t) ∈ R3, and [q(t)] ∈ L2([0,1],R3)/Γ. Now we are interested in tra-
jectories in the space P̃ and therefore define a new space Q̃=L2([0,1], P̃). We reiterate that
for any element Q ∈ Q̃ and a time t ∈ [0,1], Q(t) has two components – one for R3 denoting
the base point and one for L2([0,1],R3)/Γ denoting the elastic shape-scale-orientation space
of a side chain. In order to impose a metric on Q̃ and to compare elements of this space,
we will use the same idea as in the previous section, with the obvious modification that P
element is replaced by P̃ . Everything else, including the expressions for the norm, geodesic
paths, and geodesic distances, remain same. For each time point s, α(s) ∈ Q̃ is a trajectory
in P̃; it can be written as α(s)(t) where t is the parameter of the trajectory in P̃ . For each
s and t, α(s)(t) has two components (α(1)(s)(t),α(2)(s)(t)), where the first component is a
point in R3 denoting the starting point of a side chain and the second component denotes the
elastic shape-scale-orientation of that side chain.

The re-parameterization group Γ acts on the set Q according to the mapping (Y,γ)(t) =
Y (γ(t)). The SRVF of the re-parameterized Y is given by (Q ◦ γ)

√
γ̇ . This suggests the

matching of full trees according to: infγ∈Γ ‖Q1− (Q2 ◦ γ)
√

γ̇‖Q̃. One again, the geodesic
path is a straight line between the matched trajectories Q1 and (Q2,γ

∗), and the geodesic
distance is the minimum value obtained in the optimization above.

4 Experimental Results

Now we present some preliminary results that demonstrate the elastic tree alignment/comparison
outlined above.
Example 1: This case, shown in the top of Figure 5, the two trees are identical except that the
side branches of the second tree have been artificially moved to a new location, so that they
each start at a different location on the main branch. We examine the geodesic between the
two trees with two different weights λ = 0.9 and λ = 0.999. The two geodesics are shown
in the bottom row of Figure 5. Although λ = 0.9 gives more weight to the side branches, it’s
low enough in this case that the optimal alignment does not match the larger side branches
to each other, so the geodesic simultaneously shrinks one side branch to a null curve while
growing a new one. At λ = 0.999, the side branches are matched to each other and they
smoothly deform into one another.
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Figure 6: Top: two trees from [15]. Bottom row: Geodesic between them using λ = 0.5
(left) and 0.999 (right).

Figure 7: The first two plots are trees from [15] – one with three side branches and one with
two. On the right, the array of ten plots is a geodesic between the two trees using λ = 0.999.

Example 2: Here we align two different axonal trees from real data taken from neuromorpho
database. The top row of Figure 6 shows the two initial trees and the bottom row shows
geodesics using λ = 0.5 and λ = 0.999.
Example 3: Next, we show an optimal alignment and geodesic path between two trees with
different numbers of branches – one with three branches and the other with two. The two
trees and their optimal geodesic are depicted in Figure 7. In the optimal alignment, two pairs
of branches are matched to each other, and in the geodesic, the remaining unmatched branch
is smoothly transformed into the null branch.

5 Summary
We have introduced an extension of the previous work, on elastic shape analysis of Eu-
clidean curves, to include curves with infinite-dimensional annotations. We represent an
axonal tree by a composite trajectory in the joint position and shape-scale-orientation space
of curves, and develop a framework for elastic comparisons of such trajectories. This results
in geodesic paths across trees with arbitrary shapes, numbers, and locations of side branches.
Some preliminary results are presented.
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