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1 Introduction
In this paper we focus on problems that deal with comparison of shapes of trajectories. One
motivation comes from action recognition where features extracted from video (or RGB
Depth video) frames are naturally represented by elements of nonlinear manifolds, and where
temporal evolutions of an action can be modeled by trajectories on those manifolds. How-
ever, as mentionned by [11], [14] and [7], the execution rate (velocity) of activities may often
vary. It follows that, without the execution invariance, two identical actions can be viewed as
very different trajectories. Typical approaches for accounting for variations in execution rate
are either directly based on the dynamic time warping (DTW) algorithm or some variation
of this algorithm.

One promising idea is to formulate the features motion as trajectories. Matikainen et
al. [4] present a method for using the trajectories of tracked feature points in a bag of words
paradigm for video action recognition. Despite of the promising results obtained, the authors
do not take into account the geometric information of the trajectories.

More recently, in the case of human skeleton in RGB-Depth images, Devianne et al. [2]
propose to formulate the actions recognition as the problem of computing a distance between
trajectories generated by the joints moving during the action. An action is a parameterized
path on the shape space of the human skeleton. Similar to the ideas of Devianne et al.,
Su et al. [8] propose a metric which takes into account time-warping on a Riemannian
manifold. They propose a metric, which allows the regitration of trajectories and compute
statistics of the trajectories. Su et al. [9] apply this framework to the problem of visual speech
recognition. All these approachs require a registration of trajectories. In the present paper,
we propose a new theoretical framework which uses the shape information of trajectories.
The main contributions of this paper are:

• The proposed framework is independent of time-re-parameterization of trajectories in
R3.

• A new rate-invariant metric on the shape space of trajectories is proposed. No trajec-
tories registration is required.

• We demonstrate the use of this framework theory in two computer vision applications.
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The rest of this paper is organized as follows. Section 2 presents the gauge invariant
framework for comparing shapes. Section 3 presents applications of the proposed approach
to action recognition.

2 Mathematical framework
The trajectory of a point in Rn can describe the evolution of a hurricane on the Earth, of a car
driver in a city, or of the joints of a tennis player. There are two principal characteristics of
the movement: the velocity of movement and the route. In this paper, we are only interested
in the route used by the point, i.e. we want to be able to compare the routes of two different
points irrespective of the velocity of the movements. The corresponding mathematical ob-
jects are the following : a point-trajectory will be synonymous with a parameterized curve
f : [0,1]→Rn and the route used by the point f (t) will be synonymous with the shape [ f ] of
the curve f , which is the equivalence class of f modulo the action of the re-parameterization
group Diff+([0,1]). The shape [ f ] of the parameterized curve f will be also called the un-
parameterized curve corresponding to f . We recall this quotient construction in the next
section. Similar framework was proposed in [10] on the space of parameterized surfaces, the
gauge invariant framework is used to provide a re-parameterization-invariant framework.

2.1 Space of Trajectory Shapes
In this section the space of interest is the space of un-parameterized smooth curves in Rn. A
curve in Rn can be represented by a smooth function f : [0,TE ]→Rn in the following way :
given f , the corresponding curve is the trajectory of the point f (t) when t ranges in [0,TE ].
The maximal value TE of time is the duration of execution of the movement and will be set
equal to TE = 1. However, we will keep writing TE instead of 1 in the body of the paper in
order to avoid confusion with another duration TD which will be the duration of deformation
of a movement into another and will appear below. Two functions f1 and f2 represent the
same shape or route if their images are the same (see Figure 1), and this happens if and only
if f2 = f1 ◦ γ , where γ is a re-parameterization of the interval [0,TE ]. To be fully precise the
space F of functions considered in this paper is

F = { f ∈ C∞([0,TE ],Rn) | f ′(t)∧ f ′′(t) 6= 0, ∀t ∈ [0,TE ]},

and the space of shapes is denoted by S, and is the quotient space of the space F by the
group of time re-parameterizations Γ = Diff+([0,TE ]) :

Shape space S = F/Γ
space of functions
modulo re-parameterization.

Both F and S are infinite-dimensional smooth Fréchet manifolds.

2.2 Comparison of shapes
In order to compare two shapes, i.e. two un-parameterized curves S1 and S2 in S, we will
quantify the minimal energy needed to deform one shape into the other. To define an appro-
priate energy function, we will endow S with a Riemannian metric ((·, ·)). A Riemannian
metric allows to compute the norm of a tangent vector to S. Note that a tangent vector to the
space S at some curve S1 is an infinitesimal deformation of S1 which is given by a vector
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Figure 1: Two parameterized curves f1 and f2 corresponding to the same shape [ f1] = [ f2],
and a parameterized curve f3 corresponding to a different shape [ f3].

field along S1. A deformation s 7→Ψ(s) of one un-parameterized curve S1 into another one
S2 is a metamorphosis of un-parameterized curves such that at deformation-time 0, the shape
is S1, i.e. Ψ(0) = S1, and at deformation-time TD the shape is S2, i.e. Ψ(TD) = S2. Given a
deformation Ψ relating two shapes S1 and S2, one can compute the energy of deformation
E(Ψ) using the Riemannian metric by integrating along the deformation the squared-norm
of the velocity vector Ψs =

dΨ

ds (s) of the deformation :

E(Ψ) =
∫ TD

0
((Ψs(s),Ψs(s)))Ψ(s) ds. (1)

Analogously, one can compute the length L(Ψ) of the deformation Ψ by integrating the norm
of the velocity vector :

L(Ψ) =
∫ TD

0

√
((Ψs(s),Ψs(s)))Ψ(s)ds. (2)

Of course, there are many possible deformations of S1 into S2, but the energy being positive
(since it is the integral of a positive function), it has a minimum. A deformation having the
minimal value of energy is remarkable and is a geodesic. The minimal value of the length is
called the geodesic distance between S1 and S2. The geodesic distance between two curves
S1 and S2 is therefore given by :

dS(S1,S2) = infΨ:[0,TD]→S,Ψ(0)=S1,Ψ(1)=S2 L(Ψ),

where the infimum is taken over all deformations from S1 to S2.

2.3 From shapes to functions
Remark that to define the distance between two un-parameterized curves using a Riemannian
framework, we needed to speak about deformations of un-parameterized curves or shapes.
In practice, instead of handling shapes directly, it is more convenient to handle functions f
representing shapes. Indeed the curves we consider are given by the positions of sensors
with respect to time, i.e. by functions f on a time-interval with values in Euclidean space.
Therefore, instead of working on the space S directly, we will work on the space of func-
tions F , and the deformation space which will play a predominant role will be the space of
deformations of functions. Let us therefore introduce the space of deformations :

D := C∞([0,TD],F),

which is a smooth Fréchet manifold.
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Figure 2: Upper frame : initial curve in red, final curve in blue; middle frame : a deformation
of the red curve into the blue one; lower frame : velocity vector field of the deformation at 4
deformation-times (initial time, 2 intermediate times, and final time).

Note that, at this stage, there are two parameters representing an evolution : the parameter
t corresponding to the velocity of execution of a movement represented by a function f (t),
which will be called the execution-time and ranges from 0 to TE , and the parameter s corre-
sponding to the deformation Ψ of a movement (more precisely of a function representing a
movement) into another, which will be called the deformation-time and ranges from 0 to TD.
To have a picture in mind consider the two curves depicted in the upper frame of Figure 1.
A metamorphosis from the red curve into the blue one is depicted in the middle frame of
Figure 1. It is a continuous deformation of the first curve into the other. The execution-time
axis is the same as the one used in the upper frame of Figure 1. The deformation-time axis is
the one used to draw intermediate curves, interpolating between the red and blue curves. In
the last frame of Figure 1, the starting red curve, the ending blue curve, and two intermediate
curves are depicted, as well as the velocity vector field of the deformation (in green) at these
four deformation-times.

2.4 Drawback of using functions

The drawback of using functions to encode the variation of the shape of curves is that it
introduces variability in the way curves are parameterized. Recall that two parameterized
curves f1 and f2 correspond to the same shape if and only if f1(t) = f2(γ(t)) for any t ∈
[0,TE ], where γ belongs to the reparameterization group Γ := Diff+([0,TE ]). Analogously,
two deformations Ψ1 and Ψ2 correspond to the same parameterized metamorphosis of un-
parameterized curves if

Ψ1(s, t) = Ψ2(s,γ(s, t)), (3)



DRIRA ET AL.: GAUGE INVARIANT FRAMEWORK FOR TRAJECTORIES ANALYSIS 5

for any t ∈ [0,TE ] and s ∈ [0,TD], where this time γ belongs belongs to the group G :=
C∞([0,TD],Γ) of time-dependent reparameterizations. The relation (3) will be written

Ψ1 = γ
−1 ·Ψ2 (4)

for short. Note that at each deformation-time s ∈ [0,TD], the function t 7→ γ(s, t) belongs to
Γ and is a re-parameterization of the curve t 7→ Ψ2(s, t). The group G is called the gauge
group, and one says that G acts by gauge transformations on the space of deformations D.

2.5 Choice of a Riemannian metric on Shape space

Recall that the unit tangent vector field to the parameterized curve f is defined as ~v = f ′
‖ f ′‖ ,

the unit binormal is~b = f ′∧ f ′′
‖ f ′∧ f ′′‖ and the unit normal is ~n =~b∧~v. Any parameterized curve

f can be re-parameterized according to the arc-length l =
∫ TE

0 ‖ f ′(t)‖dt into a curve with
constant speed. If δ f is a function taking any t ∈ [0,TE ] to a vector of Rn based at f (t) (i.e.
δ f ∈ TfF), then its derivative with respect to arc-length is defined as

Dl(δ f )(t) :=
(δ f )′(t)
‖ f ′(t)‖

.

Let us introduce the following Riemannian metric on the space of parameterized curves
F :

Ga,b,c(δ f ,δ f ) =∫ TE
0

(
a〈Dlδ f ,~v〉2 +b〈Dlδ f ,~n〉2 + c〈Dlδ f ,~b〉2

)
‖ f ′‖dt

(5)

where δ f ∈ TfF and a, b, c are positive constants. For c = 0, this metric was introduced in
[5] and called an elastic metric. It was shown in [1] that it is, in the case of plane curves, a
flat Riemannian metric.

The important property of this metric onF is that it is Γ-invariant, that is Ga,b,c(δ f ,δ f )=
Ga,b,c(δ f ◦ γ,δ f ◦ γ), for any re-parameterization γ ∈ Γ = Diff+([0,TE ]). One consequence
of this property is that it induces a Riemannian metric on the quotient space S such that the
quotient map is a Riemannian submersion. However to compute the quotient Riemannian
metric on S, an optimization over the infinite-dimensional group of re-parameterizations is
needed, leading to extra computational costs. The comparison of shapes using the quotient
elastic metric via an optimization over the re-parameterization group has been implemented
in [5].

In the present paper, we want to avoid the optimization step in order to reduce compu-
tational cost. For this purpose, we will use another consequence of the Γ-invariance of the
metric Ga,b,c. Namely that its restriction to the normal vector fields defines a Riemannian
metric on the quotient space, which is different from the quotient metric but as good as the
quotient metric for comparing shapes, and which has the advantage of giving the same ‘dis-
tance’ d( f1, f2) = d( f ′1, f ′2) for any parameterized curves f ′1 ∈ [ f1] and f ′2 ∈ [ f2]. Let us first
explain what we mean by normal vector fields.

Definition 1 A vector field V along a parameterized curve f is said to be a normal vector
field if V (t) is orthogonal to the unit tangent vector field~v(t) = f ′(t)

‖ f ′(t)‖ , for any t ∈ [0,TE ] :

〈V (t),~v(t)〉= 0, ∀t ∈ [0,TE ],

where 〈·, ·〉 denotes the Euclidean scalar product of Rn.
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In a complementary manner, we define the space of tangent vector fields as follows.

Definition 2 A vector field V along a parameterized curve f is said to be a tangent vector
field if

V (t) = u(t)~v(t), ∀t ∈ [0,TE ]

for a real-valued function u : [0,TE ]→ R.

Note that the tangent vector fields are precisely the vector fields generated by the in-
finitesimal action of the re-parameterization group Γ. Indeed, an infinitesimal re-parameterization
of a parameterized curve f does not change the shape of f , hence can only result in a re-
arrangement of the points along the curve f . Note also that, given a vector field V along
f , we will denote by V T the component of V tangent to f , and by V⊥ the component of V
orthogonal to f . One has :

V T = 〈V,~v〉~v

and
V⊥ =V −〈V,~v〉~v.

Hence V =V⊥+V T . Then we have the following :

Proposition 1 The non-negative semi-definite inner product on F defined by

((δ f ,δ f )) f := Ga,b,c(δ f⊥,δ f⊥) (6)

induces a Riemannian metric on the quotient space S and satisfies the gauge invariance
condition

L(Ψ) = L(γ ·Ψ), (7)

for any time-dependent re-parameterization γ ∈ G = C∞([0,TD],Γ), where

L(Ψ) =
∫ TD

0

√
((Ψs(s),Ψs(s)))Ψ(s)ds (8)

is the length of the deformation Ψ.

Proof. The idea of the proof is that the product ((δ f ,δ f )) f is zero precisely when δ f⊥ =
0, or equivalently when δ f is tangent to the parameterized curve f . This happens if and
only if δ f is generated by an infinitesimal re-parameterization of the parameterized curve
f . Taking the quotient by the re-parameterization group Γ amounts therefore precisely to
cancelling out the tangent vector fields. Hence the resulting inner product on shape space is
positive-definite and defines a Riemannian metric on S. The gauge-invariance of the length
is a direct consequence of the fact that the gauge group generates vector fields at which the
inner product (6) vanishes.

Corollary 1 The Riemannian distance dS on the Shape space S for the Riemannian metric
induced by (6) satisfies :

dS([ f1], [ f2]) = d( f ′1, f ′2),

for any parameterized curves f ′1 ∈ [ f1] and f ′2 ∈ [ f2], where

d( f ′1, f ′2) = infΨ :[0,TD]→F ,Ψ(0)= f ′1,Ψ(1)= f ′2
L(Ψ). (9)
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The practical consequence of the previous corollary is that, contrary to the Rieman-
nian framework on the space of functions F , any pair of functions f1 and f2 represent-
ing two given shapes S1 and S2 respectively is good enough to compute the geodesic dis-
tance in Shape space S. Recall that when F is endowed with a Riemannian metric, the
geodesic distance in shape space between S1 and S2 is obtained by minimizing over the re-
parameterization group the geodesic distance between f1 and f2 ◦γ where f1 and f2 are such
that [ f1] = S1 [ f2] = S2, and where γ ∈ Γ. This minimization is necessary in the Riemannian
framework on F , since the geodesic distance varies when moving in the fiber of the quotient
map F → S . In the present framework, the function d(·, ·) defined by (9) is not properly
speaking a distance function on F since d( f1, f1 ◦ γ) = 0 for any γ ∈ Γ, so the inner product
(6) on F does not define a Riemannian metric on F since it has a kernel. But the kernel has
been chosen to ensure that the function d( f ′1, f ′2) does not vary when f ′1 and f ′2 are moving
independently in [ f ′1] = S1 and [ f ′2] = S2 (contrary to the geodesic distance in a Riemannian
framework). This property is a consequence of the vanishing of the inner product on tangent
vector fields together with the Γ-invariance inherited from the Γ-invariance of the elastic
metric Ga,b,c and of the space of normal vector fields.

2.6 Implementation of the Rate-invariant comparison of shapes
As mentioned before, the advantage of this gauge-invariant construction is that there is no
need to optimize over the re-parameterization group. In practice, the deformation cost func-
tion used to compare two shapes S1 = [ f1] and S2 = [ f2] is :

E = inf
Ψ:[0,TD]→F |,Ψ(0)= f1,Ψ(TD)= f2

E(Ψ),

where

E(Ψ) =
∫ TD

0
Ga,b,c

(
dΨ

ds

⊥
,

dΨ

ds

⊥
)

ds,

and
dΨ

ds

⊥
=

dΨ

ds
−
〈

dΨ

ds
,~v
〉
~v.

The infimum in the definition of the cost function E will be approximated using a path-
straightening method explained in detail in Algorithm 1. The algorithm has as input two
parameterized curves f1 and f2 representing two shapes [ f1] and [ f2], and a basis of pertur-
bation B. An element of B is a vector field on the path connecting f1 to f2.

3 Human actions recognition application
An action is a sequence of frames forming a movie. Typical actions are walking, running,
rotating. The speed of execution of the action induces variability that one would like to
remove. Indeed, the walk can be slow or fast, but the movements accomplished in a fast
walk are closer to the ones accomplished in a slow walk then in a run. In the context of
action recognition, one major challenge is to be able to distinguish actions like a fast walk
and a slow run.

The distribution of activity-specific temporal warpings,
Several authors [3, 12, 13] use the skeleton extracted using the Kinect for action recogni-

tion. In Figure 3, we report the skeleton’s tracking during human actions. The first two rows
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Input: Two trajectories f1 and f2, a basis of perturbation B.
Output: The minimal energy needed to deform f1 into f2 given by the value of the

cost function E.
Set5E = 1.
1- Pre-processing step : i = 1,2 decompose fi into Fourier series
fi(t) = a0 +∑m am cos

(
2πm
TE

t
)
+bm sin

(
2πm
TE

t
)

where a0,am and bm are constant
vectors in Rn and cut the high-frequency components, i.e. replace fi by
f̃i = a0 +∑

M
m am cos

(
2πm
TE

t
)
+bm sin

(
2πm
TE

t
)

for some chosen M.

2- for i = 1,2 parameterize f̃i by arc-length and resample it uniformly using a spline
interpolation.
3- Initialize the path Ψ between f̃1 and f̃2 by the linear interpolation between f̃1 and
f̃2.
while5E > 10−3 do

4- Compute the energy E of the path Ψ.
5- Set Ψupd = 0.
for ind← 1 to size(B) do

6- Add a perturbation to the current path Ψ: Ψeps = Ψ+ ε1 B(ind), where
B(ind) is the element of the pertubation basis B of index ind.
7- Compute the energy Eeps of the perturbed path Ψeps.
8- Compute the gradient of energy5Eeps in the direction B(ind) using the
approximation5Eeps ∼

Eeps−E
ε1

.
9- Compute the updating path: Ψupd = Ψupd +5E ·G(ind)

end
10- Update the path: Ψ = Ψ− ε2Ψupd

end
Algorithm 1: Computation of the cost function E.

report the same action with different rates. It is clear that the trajectories generated by joints
present time-warping transformations and this is a challenging task in action recognition.

Using the Kinect, the human skeleton can be extracted from depth images in real-time
thanks to the work proposed by Shotton et al.[6] where a real-time method is defined to
accurately predict 3D positions of body joints (20 joints) in individual depth maps without
using any temporal information.

For given human action sequences, we propose to compare the pairwise trajectories of
corresponding joints using the gauge invariant framework described in the previous section.
The sum over all joints of the resulting distances represents the dissimilarity score. This score
is used for human action recognition. We notice that we detect the specific case when the two
corresponding joints do not move considerably. In this case, the distance is forced to zero
and the calculation is avoided. This idea is illustrated in Fig. 3. The trajectories illustrated
in the upper two rows correspond to the same action executed with different rates. However,
the action corresponding to the trajectories in the two lower row is different. The trajectories
generated by the same action present similar shapes with different time execution. In this
case, using the gauge invariant framework presented previously, we argue that the distance
between two trajectories corresponding to the same action will be small without any need
for time alignment.
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Figure 3: Illustration of skeleton’s tracking during human actions. The upper two rows report
the same action conveyed in different rates. The remaining two rows illustrate another action
with different rates.

We propose to use data from a public dataset : MSR Action 3D dataset [3] on which many
methods have been evaluated. This dataset includes 20 actions performed by 10 persons
facing the camera. Each action is performed 2 or 3 times. In total, 567 sequences are
available. The different actions are high arm wave, horizontal arm wave, hammer, hand
catch, forward punch, high throw, draw X, draw tick, draw circle, hand clap, two hand wave,
side-boxing, bend,..
We perform our test on a subset of 30 human actions from MSR dataset with different rates.
Examples of the actions are reported in Figure 3; the two upper rows represent the same
action with different rates. The down two rows reports another action with different rates.
We success to correctly classify 29 actions over the 30 used in this small experiment.

4 Conclusion

Analysis of trajectories are very important in many areas, e.g. medical imaging, computer
vision etc. In this paper, we have provided a gauge invariant framework for comparing
trajectories while being invariant to time-warping.

Specifically, we have defined a proper Riemannian metric directly on the quotient (shape)
space, rather than inheriting it from pre-shape space. We have used it to formulate a path
energy that measures only the normal components of velocities along the path. The geodesic
computation is based on a path-straightening technique that iteratively corrects paths be-
tween curves until geodesics are achieved.

Both theoretical proofs and experimental results on trajectories from human action are
provided to validate this framework. For future work, we would like to extend it to other
applications with different underlying manifolds.
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