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Abstract

Dynamic phenomena such as human activities, dynamic scenes, and moving crowds
are commonly observed through visual sensors, resulting in feature trajectories sampled
in time. Such phenomena can be accurately modeled by taking the temporal variations
and changes into account. For problems where the trajectories are sufficiently different,
elastic metrics can provide distances that are invariant to speed, but for more complex
problems such as fine grained activity classification, one needs to exploit higher order dy-
namical properties. For features in the Euclidean space, applications such as crowd mon-
itoring, dynamic scene recognition and human movement quality analysis have found
a lot of success this way. In this paper we propose the largest Riemannian Lyapunov
exponent (L-RLE), which is the first generalization of the largest Lyapunov exponent to
Riemannian manifolds. The largest Lyapunov exponent is a classic measure to quantify
the amount of chaos within signals in the Euclidean space, and allows us to exploit higher
order dynamics for various applications. We show the effectiveness of the L-RLE on two
manifolds - the Grassmann and the SO(3) lie group. By modeling human actions as dy-
namic processes evolving on Riemannian manifolds, we show that L-RLE can measure
the amount of chaos within each action accurately. We show that our measure is a good
generalization of largest Euclidean Lyapunov exponent (L-ELE), and is less susceptible
to arbitrary distortions.

1 Introduction
Dynamic phenomena such as human activities are commonly observed through visual sen-
sors, typically resulting in feature trajectories sampled in time. Accurate metrics on such
trajectories are those that take its temporal nature into account. For example, in human ac-
tion recognition it is well known that accounting for temporal re-parametrization improves
the distance metric between two actions, resulting in significantly improved recognition per-
formance [24, 28]. For problems where the elasticity of the metric does not suffice, one has
to go a step further and study the properties of the dynamical system that generates the tra-
jectory. A diverse set of applications have benefited from dynamics based metrics such as –
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human action recognition [4, 37], bio-mechanics [23], dynamics of crowds[3], and dynamic
scene recognition [22]. It has also been shown that such properties can help in fine grained
classification between similar kinds of human movement [30]. Exploiting the dynamics is
relatively easy when the concerned feature space is Euclidean, but the last few years have
seen an increased interest in modeling features that lie on non Euclidean spaces such as Rie-
mannian manifolds. Some examples of such features are – shapes on Kendall’s shape space
[15], Histogram features [12], skeletal features [29], and Covariance features [27]. More
recently, there has also been an interest in modeling trajectories on such non-linear mani-
folds using elastic metrics [5, 24]. However, the study of dynamical invariants has remained
unexplored.

In this paper, we address the problem of uncovering the properties of dynamical processes
evolving on Riemannian manifolds, for applications in human action analysis. While the
problem of modeling Riemannian trajectories is recent, to the best of the authors’ knowl-
edge there has not been a study to exploit Riemannian dynamics in computer vision. In this
regard, we propose the largest-Riemannian Lyapunov exponent (L-RLE), which is a general-
ization of the largest Euclidean Lyapunov exponent [34], a widely used feature that measures
chaos in a time series. Traditional chaotic invariant measures determine the average rate of
divergence (or convergence) between nearby states of a system over time. We show that
the proposed measure can be used to quantify the amount of chaos within a Riemannian
dynamical process. Further, we show that for human action analysis from silhouettes on
the Grassmann manifold and curves in SO(3), the representational manifold itself is a good
candidate for the phase space. Experiments indicate that the L-RLE correlates well with the
largest Lyapunov exponent extracted on Euclidean features for human action analysis, while
also retaining the robustness advantages and invariances of the manifold-valued features.

More broadly, the chaotic properties of time series data have been found useful in model-
ing temporal data in several applications. Measures such as the largest Euclidean Lyapunov
exponent (L-ELE) allow us to quantify the intrinsic dynamical nature of these phenomenon.
Existing methods to compute the L-ELE assume the time series is Euclidean, i.e., the under-
lying metric is the commonly used `2 - norm. Whereas many state-of-the-art representations
or features involve features that are non-Euclidean. We generalize the notion of a Lyapunov
exponent to two different manifolds - the special orthogonal group denoted as SO(3), which
is a lie group containing all 3×3 rotation matrices. These occur commonly in data collected
from smartphones, and fitness trackers, which measure orientation information. Next, we
represent shape silhouettes of humans performing different activities, and model the shapes
as affine invariant subspaces, which naturally lie on the Grassmann manifold [26]. This
shape representation provides invariance to affine transformations in addition to scale and
rotation changes - which is useful in modeling small camera viewpoint changes.

2 Related Work

Recent years have seen advancements in understanding different properties of Riemannian
trajectories, motivated by the increasing availability temporal data from videos. For example,
[24] proposed a rate invariant representation known as the Transport Square Root Velocity
Function (TSRVF) for trajectories, such that the final metric remains unchanged to identical
time warping. Next, [5] showed that the TSRVF could be used to exploit statistical properties
of the trajectories to obtain a lower dimensional embedding. Another study [36] models
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human actions as Riemannian trajectories, by transporting all the points in the trajectory to
the starting point, this representation is used to learn a subspace that preserves geodesics. The
development of such tools to manipulate, and represent such non-linear trajectories provides
a foundation to explore even higher order properties such as dynamics.

While the idea of studying the dynamics of Riemannian trajectories remains to be addressed,
the idea of using differential geometry to understand the phase space obtained from Eu-
clidean time series exists [10]. A closely related theoretical piece of work proposed the gen-
eralization of the finite time Lyapunov exponent (FTLE) and Lagrangian coherent structures
(LCS) to Riemannian manifolds [16]. We differentiate our work by proposing an algorithm
to compute the largest Lyapunov exponent, a different measure of chaos than FTLE. We also
validate our work on real and synthetic data, with varying degrees of chaos.

Traditional dynamical modeling approaches for Euclidean space data include parametric
methods such as Hidden Markov Models (HMMs) and Linear Dynamical Systems (LDSs),
which have been used for computer vision applications like action recognition [33, 35] and
gait analysis [8, 14]. Recent work by Ali et al. proposed the use of nonparametric mod-
eling approach using ideas from chaos theory to model the dynamics in human actions [4].
The authors use Rosenstein’s algorithm [19] to estimate largest Lyapunov exponent from
trajectories of action data as part of their feature representation. We propose an extension of
Rosenstein’s algorithm that computes it for Riemannian manifolds.

3 Preliminaries
We describe the geometric properties of the Grassmann and the SO(3) manifolds next. For a
primer on differential geometry and Riemannian manifolds, we refer the interested reader to
excellent resources on the topic [2, 9].

3.1 The Grassmann manifold
We represent the shape silhouette of a human extracted from an image as a point on the
Grassmann manifold. The silhouette is represented as L = [(x1,y1),(x2,y2) . . . ,(xm,ym)],
where (xi,yi) represent the zero centered landmarks on the silhouette. Affine transforms
of a base shape Lbase can be expressed as La f f ine(A) = LbaseAT , and this multiplication by
a full rank matrix on the right preserves the column-space of the matrix, Lbase. Thus the
2D subspace of Rm spanned by the columns of the shape, i.e. span(Lbase) is invariant to
affine transforms of the shape. Subspaces such as these can be identified as points on a
Grassmann manifold [26]. A given d-dimensional subspace of Rm, Y can be associated with
a idempotent rank-d projection matrix P = YY T , where Y is a m× d orthonormal matrix
such as span(Y ) = Y . The space of m×m projectors of rank d, denoted by Pm,d can be
embedded into the set of all m×m matrices - Rm×m- which is a vector space. Using the
embedding Π : Rm×m → Pm,d we can define a distance function on the manifold using the
metric inherited from Rm×m.

d2(P1,P2) = tr(P1−P2)
T (P1−P2) (1)

The projection Π : Rm×m→ Pm,d is given by:

Π(M) =UUT (2)
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where M =USV T is the d-rank SVD of M.

3.2 The Special Orthogonal Group - SO(3)
The special orthogonal group, denoted by SO(3) is a Lie group, containing the set of all 3×3
rotation matrices about the origin of three-dimensional Euclidean space R3 under the oper-
ation of composition.The 3×3 identity matrix I3 is an element of SO(3) and is the identity
element of the group. The exponential map, which is defined as expSO(3) : so(3)→ SO(3)
and the inverse exponential map, defined as logSO(3) : SO(3)→ so(3) are used to traverse
between the manifold and the tangent space respectively. The exponential and inverse expo-
nential maps for SO(3) are simply the matrix exponential and matrix logarithms respectively,
from the identity element I3. For efficient implementations of a general exponential and in-
verse exponential maps between any two arbitrary points, we refer the reader to [18]. The
tangent space at I3 of a SO(3) is called the Lie algebra of SO(3), denoted by so(3). It is a
3-dimensional space formed by matrices of the form:

B =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 , (3)

An equivalent representation of B is vec(B) = [u1,u2,u3] which lies on R3.

4 Dynamical Systems on Geometric Spaces
Dynamical systems are mathematical models which simulate a physical phenomenon of
states evolving over time. Chaos theory studies the behavior of nonlinear dynamical sys-
tems, that are highly sensitive to initial conditions. Any perturbation to the initial conditions
of such systems yield widely diverging dynamics. This behavior is known as deterministic
chaos. Convincing evidence for existence of deterministic chaos has been provided from a
variety of research experiments [21, 25]. Due to the inherent variability in human movement,
tools from chaos theory have found wide applications in the bio-mechanics community for
analysis of human actions [23].

In the most general sense, a dynamical system is the tuple 〈M, f ,T 〉, where M is a
manifold, T is non-negative time and f is a diffeomorphism that governs the evolution of
trajectories, defined as f :M×T →M. In the Euclidean space, one can learn the paramet-
ric representation of the function f . When it is difficult to estimate the function directly, one
can estimate properties of the function. One such property is the largest Euclidean Lyapunov
exponent (L-ELE), which has seen a lot of success for dynamical analysis of Euclidean sig-
nals. There is currently no existing method to estimate f directly for trajectories Riemannian
manifolds, therefore we propose an algorithm to first generalize the L-ELE to manifolds.

The largest Lyapunov exponent, denoted as λ , is a measure of average rate of divergence
(or convergence) of initially closely-spaced trajectories over time [1, 32]. A positive value
indicates orbital divergence and hence chaos in the system. A negative value indicates orbital
convergence and hence a dissipative system. A practical method for estimating the largest
Lyapunov exponent from a time series proposed by Rosenstein [19] quantifies chaos by
monitoring the rate of divergence of closely spaced trajectories over time. The algorithm
is fast, easy to implement and robust to changes in embedding dimension, size of dataset,
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embedding delay and noise level. We refer to the Euclidean space largest Lyapunov exponent
as the largest Euclidean Lyapunov exponent (L-ELE) to differentiate it with our measure, the
largest Riemannian Lyapunov exponent (L-RLE). More formally, the Lyapunov exponent is
defined as follows:

d j(i) = d j(0)eλ1(i∆t), (4)

where d j(0) is the initial separation in the phase space and d j(i) is the separation after i time
steps of ∆t.

4.1 Largest Riemannian Lyapunov Exponent (L-RLE)
The L-ELE is computed as follows [19]: the embedding parameters lag and dimension are
estimated using the Fast Fourier Transform (FFT), which are used to construct the phase
space. Next, in the phase space the nearest neighbors are calculated constrained on temporal
separation. This is used to estimate how far two points have diverged in the phase space
as the attractor evolves over time. In generalizing this to Riemannian manifolds, we first
describe how the manifold itself can be treated as the phase space next.

The manifold as a phase space: The phase space is defined as an approximation to the
high dimensional state space of the dynamic system that governs the observed time series.
Obtaining the phase space directly is challenging because we often do not have access to all
the information required to reconstruct it, instead many algorithms resort to reconstructing
the phase space. However, reconstruction of the phase space requires estimating the period
using the FFT, which do not generalize well to manifolds. On the other hand, action features
such as shape silhouettes and stick figures are already high dimensional, and contain a lot of
information. For example, the states in a action sequences may be closely related to the poses
of the human, which are naturally points on an appropriate high-dimensional shape manifold.
Therefore, we propose that the underlying manifold can be treated as the phase space of the
system, where each time sample behaves as a “state”. We show in our experiments that the
manifold behaves similar to the phase space, and therefore is a good approximation.

Computing the L-RLE: In the phase space, the next step involves measuring how far two
nearby points have diverged over time. With the geodesic distance, we first perform a k-
nearest neighbor and then compute the quantities d j(0),d j(i) from (4) for a given point and
its nearest neighbor. To compute λ from (4), it is useful to rearrange as follows.

ln(d j(i))≈ ln(d j(0))+λ (i ∆t) (5)

Equation (4) represents a set of approximately parallel lines for different points in the
phase space. The largest Lyapunov exponent is calculated as the slope of the “average” line.
The procedure to estimate the L-RLE is outlined in algorithm 1.

5 Experimental validation
To evaluate the proposed dynamical measure, we apply it to human actions to study their
dynamic properties. We use the UMD actions dataset [28] which contains 10 actions such as
walk, run, squat, throw a ball, talk on the cell phone, push an object, and batting. These are
performed 10 times, giving a total of 100 actions in the dataset. The relatively static back-
ground allows us to extract the shape silhouettes easily, which we represent as a subspace
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Algorithm 1 Largest Lyapunov exponent on Manifolds

Input: α(t) ∈M, t = 1 . . .T
Assume the manifold is the phase space.
for j = 1→ T do

Find K Nearest neighbors constrained in time [19].
for i = 1→ K do

d j(i) = mink dM (α( j),α(i)),
ln(d j(i)) = ln(d j(0))+λ1(i ∆t)

end for
Fit a line, L j, for each set of d js, compute its slope m j.

end for
Average slope gives a robust estimate of L-RLE λ = 1

T ∑ j m j

which is a point on the Grassmann manifold. This results in actions being represented as
trajectories on the Grassmann manifold. In our first experiment, we motivate the manifold as
the phase space, before computing the RLE. We show quantitative and qualitative results in-
dicating the advantage of the proposed measure. Apart from directly working with the shape
trajectories, we consider alternate representations to understand and validate our measure.

Alternate Representations: We first motivate the idea of using the manifold itself as the
phase space before computing the Largest Lyapunov exponent. Since the alternative repre-
sentations are extracted from the same actions in the same dataset, and there is a severe lack
of “ground truth”, we make the assumption that the dynamics remains unchanged across the
features. That is, the dynamics of human actions remains unchanged when represented using
features that are Euclidean or non-Euclidean. To the best of our knowledge, we are not aware
of any work that can claim otherwise.

Multivariate Embedding (MVE) – We compare with an established algorithm to em-
bed multivariate time series data in the Euclidean space, for time-delay reconstruction of
phase space known as the multivariate embedding [11]. This simple yet powerful extension
of univariate embedding as proposed by Cao et al. [11] has proven to be useful in computer
vision applications such as action synthesis and dynamic texture synthesis [6]. Recent theo-
retical and empirical findings have demonstrated that multivariate embedding of time series
data by simple concatenation of individual univariate embedding vectors achieves good state
space reconstruction as evaluated by the shape and dynamics distortion measures [31]. The
embedding method only works with Euclidean time series data, and hence we consider the
2D landmarks on the silhouette per frame as our feature for each action. This results in each
action being represented as an (N× 2)×T , where N is the number of landmarks on each
silhouette, and T is the total number of frames. Using this data, we perform uniform multi-
variate embedding. Given multivariate time series data {xi,t}T

t=1, i = 1, . . . , p, where p is the
dimension of time series data, the reconstructed phase space vector is of the form

zt = [x1,t ,x1,t+τ1 , . . . ,x1,t+(m1−1)τ1 ,

x2,t ,x2,t+τ2 , . . . ,x2,t+(m2−1)τ2 ,

. . . ,

xp,t ,xp,t+τp , . . . ,xp,t+(mp−1)τp ].

(6)
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where mi and τi are respectively the embedding dimension and time delay for each of the
p-dimension in the multivariate time series data.

Vector Field Parallel Transport (VFPT) – We also use an intermediate represen-
tation, where we represent each trajectory as a collection of tangents. For an action j,
F j = {α̇t→t+1(t)|∀i = 1, . . . ,T}, where α̇t→t+1(t) represents the tangent that goes from α(t)
to α(t +1) in unit time. We perform a parallel transport on all the tangent vectors and bring
them to a common point at the Riemannian center of mass (RCM) [13]. We treat the trans-
ported tangent bundle as the phase space in this case. This feature takes the geometry into
account while also giving us a Euclidean representation, which we can exploit for visualizing
the phase space. We use the largest Euclidean lyapunov exponent (L-ELE) algorithm [19]
on this feature.

Viewpoint invariance: Figure 1a shows the phase space for the walking action, in 3D,
after performing dimensionality reduction using Laplacian Eigenmaps [7]. It is seen that
in both cases, the cyclic pattern of the action is captured even after dimensionality reduc-
tion. Since the Grassmann manifold can afford us affine invariance, we artificially shear the
shapes to simulate minor camera viewpoint changes. Since the multivariate embedding uses
the coordinate locations in each frame, the phase space estimated from the sheared data is
significantly distorted. The phase space obtained from the Grassmann representation remains
unchanged, as shown in figures 1b.
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(a) Phase space estimates on shape data.
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(b) Phase space estimates after change in viewpoint.
Figure 1: The Grassmann manifold for shapes, as the phase space for human activities provides invariance to
commonly observed problems such as viewpoint, scale and shift. The resulting phase space is significantly distorted
in the case of multivariate embedding, but remains unchanged in our case. We perform dimensionality reduction to
facilitate easy visualization using the Laplacian-eigen maps [7].

Phase space type Correlation
Landmarks + Multivariate Embedding + L-ELE [19] (reference) 1.00

Vector Field Parallel Transport + L-ELE 0.52
Shape feature + L-RLE 0.76

Landmarks + Multivariate Embedding + L-ELE [19] (sheared) 0.27
Vector Field Parallel Transport + L-ELE (sheared) 0.40

Shape feature + L-RLE (sheared) 0.763
Table 1: The proposed Riemannian Lyapunov exponent (RLE) on the Grassmann manifold closely relates to the
estimate obtained from the multivariate embedding on the landmarks of the silhouette. It is also much more robust
to affine transforms, compared to the Euclidean measure. Here we assume the standard largest Euclidean Lyapunov
exponent (L-ELE) without any shearing to be the reference standard.

Citation
Citation
{Grove and Karcher} 1973

Citation
Citation
{Rosenstein, Collins, and Deprotect unhbox voidb@x penalty @M  {}Luca} 1993

Citation
Citation
{Belkin and Niyogi} 2003

Citation
Citation
{Belkin and Niyogi} 2003

Citation
Citation
{Rosenstein, Collins, and Deprotect unhbox voidb@x penalty @M  {}Luca} 1993

Citation
Citation
{Rosenstein, Collins, and Deprotect unhbox voidb@x penalty @M  {}Luca} 1993



8 ANIRUDH et al.: A LYAPUNOV FEATURE FOR RIEMANNIAN DYNAMICAL SYSTEMS

We estimate the L-RLE on 100 actions in the UMD Actions dataset and report the correlation
between our measure and the Lyapunov from Multivariate Embedding on Euclidean features
in table 1. It is seen that our measure compares well with the vector space version – indicating
that for clean data the L-RLE is a good generalization of the L-ELE. Further, when we
artificially shear the data to simulate minor viewpoint changes, the multivariate embedding
algorithm and L-ELE algorithm fail severely due to the distortion in the data whereas the
L-RLE remains robust to such changes.

5.1 Validation on standard attractors
A challenging aspect to generalizing the largest Lyapunov exponent to Riemannian mani-
folds is validation. In the Euclidean space, a common way to evaluate a chaotic measure
is to test it on different attractors arising from closed-form dynamical equations such as the
Lorenz [17] and the Rossler [20] systems. Any chaotic measure must be as close to zero as
possible for perfectly periodic time series. Unfortunately, the Rossler and Lorenz systems
do not generalize easily to manifolds. We approximate these systems by generating them on
a tangent plane and wrapping them onto the manifold. Once again, we assume that the wrap-
ping action from the tangent space to the manifold does not affect the chaotic nature of the
time series. This maybe a restricting assumption in general, but is valid for small deviations
from the pole of the tangent space. We choose the special orthogonal group SO(3), which
is a Lie group, since it is 3-dimensional and allows us to naturally embed a 3-D time series
generated on its Lie algebra. The properties of the Largest Euclidean Lyapunov Exponent
(L-ELE) which we expect to observe here are the following: 1) The value for periodic sig-
nals must be zero, 2) The L-ELE is direct measure of the chaotic nature of the signal, i.e.
the higher the chaos within a signal, the higher its measured value. This pattern is clearly
observed in table 2, where a periodic signal gives us a value thats close to zero. We also
compare the L-ELE values as a reference, it is observed that even though the values are not
exactly the same, the trend is clear. A trajectory thats more chaotic has a higher L-RLE
value, similar to the Euclidean case.

Attractor L-Euclidean LE L-Riemannian LE
Lorenz [17] (higher chaos) 1.50 21.02
Rossler [20](lower chaos) 0.09 7.26
Periodic (zero chaos) 0 0.008

Table 2: Validating the L-RLE: We embed the standard attractors into the SO(3) lie group and evaluate the
L-RLE using the proposed algorithm. It is seen that the nature of the L-RLE is consistent with the L-ELE, higher
chaos implies a higher value, and periodicity implies a very low value.

6 Discussion and Conclusion
We presented a formulation to study the invariant properties of dynamical systems evolv-
ing on Riemannian manifolds. Such systems occur frequently in problems such as human
movement analysis, action recognition, and crowd analysis in computer vision. The invari-
ant properties of Euclidean dynamical systems have been useful in characterizing temporal
events for such applications in computer vision. However, there is a lack of such methods
for dynamical systems on non-Euclidean spaces. To address this, we proposed a generaliza-
tion of the largest Lyapunov exponent, a classic chaotic measure, to Riemannian manifolds.
Towards this end, we use the ambient manifold as the phase space and compute the largest
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Riemannian Lyapunov exponent (L-RLE). We show that it correlates well with the analogous
measure for Euclidean dynamics. By estimating the L-RLE on standard attractors such as
the Lorenz and Rossler, we show that our L-RLE measures the chaotic properties accurately.
We have validated the L-RLE under the assumption that the dynamical latent properties of
temporal events remains unchanged when observed in different feature spaces. A direction
of future study could be to further investigate how the dynamical properties are preserved
when the same event is observed in different modalities. While the presented work is pri-
marily empirical, a theoretical analysis of Riemannian dynamical invariants and associated
estimation algorithms, such as the proposed one, may be fruitful areas of future work.
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