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Abstract
In the framework of elastic shape analysis, a shape is invariant to scaling, translation,

rotation and reparameterization. Since this framework does not yield a closed form of
geodesic between two shapes, iterative methods have been proposed. In particular, path
straightening methods have been proposed and used for computing a geodesic that is
invariant to curve scaling and translation. Path straightening can then be exploited within
a coordinate-descent algorithm that computes the best rotation and reparameterization of
the end point curves [13]. A Riemannian quasi-Newton method to compute a geodesic
invariant to scaling, translation, rotation and reparameterization has been given in [15]
and shown to be more efficient than the coordinate-descent/path-straightening approach.
This paper extends [15] by showing that using the new approach to the geodesic when
computing the Karcher mean yields a faster algorithm.

1 Introduction
Shape analysis of curves is important in various area such as computer vision, medical di-
agnostics, and bioinformatics. The basic idea is to obtain a boundary curve of an object in
a 2D image or contours of a 3D object and analyse those curves to characterize the original
object. The research on shape analysis is rich and various ideas have been proposed, e.g.,
point-based methods, domain-based shape representations and parameterized curve repre-
sentations. One of the earliest can be traced to Kendall [8], in which the representation
of a shape uses landmarks. However, the choices of landmarks is subjective and may sig-
nificantly influence the analysis of the original objects. For example, Figure 1 shows the
geodesics computed using two different approaches: Kendall’s landmarks and elastic shape
analysis. Specifically, unlike the landmarks approach, the elastic shape analysis also takes
reparameterization of curves into account.

Many frameworks for elastic shape analysis have been proposed. Younes [16] first in-
troduced this kind of framework for general 2D curves. Younes et al. [17] studied elastic
analysis of closed curves using complex representations of 2D coordinates of curves. Sri-
vastava et al. [13] further defined a novel mathematical framework called the square root
velocity function (SRVF), which include curves in Euclidean spaces of any dimension.
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geodesic without reparameterization

geodesic with reparameterization

Figure 1: Geodesics without and with reparameterization are given by the frameworks of
landmark-based Kendall’s shape analysis [3, 8] and elastic shape analysis [13] respectively.

Elastic shape analysis is receiving increasing attention due to its superior theoretical re-
sults and effectiveness. The price for the improved effectiveness is the relative increase in
expense in computing various objects, e.g., geodesic, mean. In this paper, the SRVF frame-
work defined in [13] is considered. The advantage of SRVF framework is that it converts
the complicate Riemannian metric into the standard L2 metric and preserve the isometry of
rotation and reparameterization group action. This allows the shape space to be defined in
a relative simple way. In [5], a closed form of distance approximation for closed curves,
which is invariant to curve scaling and translation, is used and a Riemannian approach is
proposed to improve the efficiency and effectiveness for further removing rotation and repa-
rameterization. In [15], the idea of [5] is further explored when computing geodesics and
the efficiency of removing the rotation and reparameterization is improved without using the
distance approximation. In this paper, we use the approach in [15] to compute the Karcher
mean of shapes and evaluate its performance.

This paper is organized as follows. Section 2 presents the SRVF framework of [13].
Section 3 reviews the approaches of computing the geodesic in [13] and [15]. Section 4
presents an algorithm for computing the Karcher mean and, finally, the performance of the
algorithm is evaluated in Section 5.

2 SRVF Framework

A shape or curve in Rn is denoted by a parameterized function β (t) : D→ Rn, where D is
[0,1] for open curves and D is the unit circle S1 for closed curves. The representation of a
shape starts from its square root velocity (SRV) function,

q(t) =

{
β̇ (t)√
||β̇ (t)||2

, if ||β̇ (t)||2 ̸= 0;

0, if ||β̇ (t)||2 = 0.
(2.1)

where ∥ · ∥2 denote the 2-norm. The curve β can be recovered by β (t) =
∫ t

0 q(s)||q(s)||2ds
if β (0) is 0. Note translation is removed since β̇ is used. Further more, rescaling can be
removed by restricting curves to be of unit length. Since the length of β (t) is

∫
D ∥β̇ (t)∥2dt =∫

D ∥q(t)∥2
2dt, the resulting space, called the preshape space ln, for open curves is denoted as

lo
n =

{
q ∈ L2([0,1],Rn)|

∫ 1

0
||q(t)||22dt = 1

}
, (2.2)
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and for closed curves is denoted as

lc
n = {q ∈ L2(S1,Rn)|

∫
S1
||q(t)||22dt = 1,

∫
S1

q(t)||q(t)||2dt = 0} (2.3)

where
∫ 1
S q(t)||q(t)||2dt = 0 stresses the closure condition and the super scripts o and c de-

note open and closed curves respectively. Statements without a superscript apply to both
open and closed curves. A more intuitive way to denote the preshape space lc

n is {q ∈
L2(S1,Rn)|

∫ 1
0 ||q(t)||22dt = 1,

∫ 1
0 q(t)||q(t)||2dt = 0} and the closure condition means the

difference between β (0) and β (1) is zero since
∫ 1

0 q(t)||q(t)||2dt = β (1)−β (0). It can be
seen that lc

n is a submanifold of lo
n . The metrics of the spaces are endowed from L2, i.e.,

⟨v1,v2⟩L2 =
∫ 1

0 vT
1 v2dt for v1,v2 ∈ L2([0,1],Rn).

In order to remove the rotation and reparameterization, we consider the rotation group

SO(n) =
{

O ∈ Rn×n|OT O = In,det(O) = 1
}

(2.4)

and the reparameterization group

Γ = {γ : D→ D|γ is orientation-preserving,smooth bijections.}. (2.5)

The actions of SO(n) and Γ on the SRV of a curve β are:

SO(n)× ln→ ln : (O,q)→ Oq, ln×Γ→ ln : (q,γ)→ (q◦ γ)
√

γ̇ (2.6)

and it is known that the two group actions are isometric with respect to the L2 metric. It
follows that the orbit of the group actions is defined by

[q] =
{

O(q◦ γ)
√

γ̇|(γ,O) ∈ Γ×SO(n)
}

(2.7)

and the shape space is defined as:

Ln = ln/(Γ×SO(n)) = {[q]|q ∈ ln}, (2.8)

where [q] denotes the closure of [q] with respect to L2. The motivation of the closure can be
found in, e.g., [13] or [5].

Since Ln is a quotient manifold of ln and they have the same metric, a geodesic in Ln can
be represented by any geodesic in ln that is perpendicular to any orbit that it intersects, and
the distance between [q0] and [q1] ∈ Ln is given by

dLn([q0], [q1]) = inf
(γ,O)∈Γ×SO(n)

dln(q0,O(q1 ◦ γ)
√

γ̇). (2.9)

3 Computing a Geodesic
As shown later in Section 4, the gradient of the cost function of Karcher mean requires
the computation of α̇(1) given α(0) and α(1), where α is a geodesic. However, a closed
form is unknown for shape space and, therefore, the geodesic and the velocity α̇(1) must be
computed numerically. In this section, we discuss the computation of the geodesic in shape
space. Specifically, Section 3.1 gives an algorithm for computing the geodesic in preshape
space and Section 3.2 presents two approaches to remove rotation and reparameterization to
obtain a representation of geodesic in shape space.
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3.1 Path-Straightening Method in Preshape Space lc
n

The preshape space of open curves is a unit sphere and its geodesic is well-known, therefore,
we focus on computing a geodesic of closed curves. Throughout this paper, the use of word
“geodesic” means a path with a constant velocity.

Two commonly used methods of computing the geodesic in elastic shape space are the
shooting method [10] and the path straightening method [11] [9] [7] [13]. The path straight-
ening method has the advantage that all the iterates of paths connect the two end point curves
while the shooting method does not. Here, we discuss path straightening method which has
been used in [15].

Let P denote all the curves in lc
n. Let the set of paths connecting two curves q0, q1 in lc

n
be

Pq1,q2 = {α : [0,1]→ lc
n|α(0) = q0,α(1) = q1} (3.1)

We start off from an arbitrary path α(τ) in Pq1,q2 , and iterate until reaching a critical point
of the energy function

E : Pq1,q2 → R : α 7→ 1
2

∫ 1

0
⟨α̇(τ), α̇(τ)⟩dτ. (3.2)

It has been shown in [13, Lemma 4] that any critical of E is a geodesic of lc
n.

A gradient method is proposed in [13], in which the search direction is along the negative
gradient and a fixed step size is used.

Consider a path β ∈P and a vector field v ∈ Tβ P . The covariant derivative of v along
β is the vector field obtained by projecting dv

dτ (τ) onto the tangent space of Tβ (τ) lc
n for all τ .

A vector field z ∈ Tβ P is called a covariant integral of v along β if the covariant derivative
of z is v, i.e., Dz

dτ = v.
Let u denote the covariant integral of dα

dτ with zero initial value at τ = 0. The gradient of
E is given by w(τ) = u(τ)−τ ũ(τ), where ũ is the vector field obtained by parallel translating
u(1) backwards along α , i.e., ũ(1) = u(1) and Dũ

dτ (τ) = 0 for all τ ∈ [0,1].
Algorithm 1 outlines the path straightening method for computing geodesic in lc

n of [13].

Algorithm 1 Path Straightening Method
Input: Two curves β0 and β1, and a step size t > 0

1: Compute the representations q0 and q1 in lc
n.

2: Initialize a path α between q0 and q1 in lc
n.

3: Compute the velocity vector field dα(τ)
dτ along the path α .

4: Compute the covariant integral of dα(τ)
dτ , denoted by u

5: Compute the backward parallel transport of the vector u(1) along α , denoted by ũ
6: Compute the full gradient vector field of the energy E along the path α , denoted by w,

using w(τ) = u(τ)− τ ũ(τ).
7: Update α along the vector field tw. If

∫ 1
0 ∥w(τ)∥2

L2 dτ is small, then stop. Else, go to
Step 3.

The initial path α between q0 and q1 is obtained by projecting the path αo, the geodesic
between q0 and q1 in lo

n , onto the lc
n (see details in [13, Item 1]). This usually offers good

initial iterate and Algorithm 1 converges after only a few iterations to reach a tight stopping
criterion, e.g.,

∫ 1
0 ∥w(τ)∥2

L2 dτ ≤ 10−10.
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3.2 Removing Orientations and Reparameterizations
3.2.1 Approach in [13]

In order to obtain a geodesic in shape space Ln, we must minimize the cost function H(O,γ)=
dlc

n(q0,O(q1 ◦ γ)
√

γ̇) over the product of manifolds SO(n) and Γ. The algorithm in [13]
solves this optimization by alternately optimizing between SO(n) and Γ. This requires the
computation of the gradient with respect to O and γ .

To this end, consider the cost function dlc
n(q0, q̃1) with respect to q̃1. Let α denote the

geodesic between q0 and q̃1 in lc
n. It is known from [13] that the gradient of dlc

n(q0, q̃1) is
η = α̇(1)/∥α̇(1)∥. It follows that the gradient with respect to O is

gradO H(O,γ) = PO

(∫
D

η
√

γ̇(q2 ◦ γ)T ds
)

(3.3)

where PO(M) = (M−OMT O)/2.
Since Γ is an infinite dimensional manifold, the gradient with respect to γ is approximat-

ed by

gradγ H(O,γ)≈
k

∑
i

bi DH(O,γ)[bi], (3.4)

where {bi}∞
i=1 is a basis of the tangent space of γ , the tangent space of γ is Tγ Γ = L2(S1,R),

k is the number of the elements of the basis used in the approximation and DH(O,γ)[bi]
denotes the directional derivative of H(O,γ) along direction bi. It can be shown that

DH(O,γ)[bi] =

⟨
η ,O

(√
γ̇ q̇1(γ)bi +

1
2
√

γ̇
ḃiq1(γ)

)⟩
L2

. (3.5)

The suggested basis {bi} is an orthonormal basis of the tangent space of γ under the Palais
metric ⟨v1,v2⟩P = v1(0)v2(0)+

∫ 1
0 v̇1(τ)v̇2(τ)dτ , i.e.,

{1, sin(nt)
nπ

,
cos(nt)−1

nπ
,n = 1,2, . . .}. (3.6)

The algorithm of removing rotation and reparameterization is stated in Algorithm 2.

Algorithm 2 Removing rotation and reparameterization
Input: Two curves β0 and β1, and step sizes t1, t2 > 0

1: Set β̃1 to be β1, O0 = I, γ0 = γid, and k = 0.
2: Compute the representations q0 of β0 and q1 of β̃1.
3: Compute the geodesic α between q0 and q1 in lc

n using Algorithm 1.
4: Update the rotation by Ok+1 = Ok exp(t1 gradI H(I,γid)), where gradI H(I,γid) is (3.3).
5: Update the reparameterization by γk+1 = γk ◦ (γid + t2 gradγid

H(I,γid)), where
gradγid

H(I,γid) is (3.4). Note that t2 should be small enough such that γk+1 is non-
decreasing.

6: Update β̃1← Ok+1β1 ◦ γk+1 and set q1 to be the SRVF of β̃1
7: If some stopping criterion is satisfied, then stop. Else, k← k+1 and goto Step 2.

Note that in [13] the substitution of l =
√

γ̇ is used in H. It follows that the cost function
is defined on SO(n) and the first quadrant of the unit sphere L= {l ∈ L2([0,1],R)|∥l∥L2=1}.
It is pointed out that using the basis (3.6) essentially yields the same method in [13, Section
4.4] without the extra substitution step.
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3.2.2 Approach in [15]

The basic computational variants of the path straightening method in the shape space can
be characterized as coordinate descent, alternating direction, or steepest descent with a fixed
step size. It is well-known that such methods may from slow convergence, see e.g., [12].
In this paper, as in [15], a faster algorithm, a limited-memory version of Riemannian BFGS
method (LRBFGS), which is introduced in [4] and shown to outperform many other start-of-
the-art Riemannian algorithms for many large-scale problems, e.g., [5, 6, 12].

Since it is observed that Algorithm 2 dominates the computational time required when
computing a geodesic, we only use LRBFGS to improve the performance of removing rota-
tion and reparameterization.

For the closed curves, the reparameterization Γ can be characterized as

Γc = [0,1]×Γo (3.7)

and its action is therefore lc
n ×Γc → lc

n : ((q,m),γ))→ (q(t +m mod 1) ◦ γ mod 1))
√

γ̇ ,
where Γo is the reparameterization group for open curves, i.e.,

Γo =
{

γ : [0,1]→ [0,1]|γ is a diffeomorphism
}
. (3.8)

Further setting l =
√

γ̇ , we obtain a cost function

f (O,m, l) = dlc
n(q1,Olq2(

∫ t

0
l2(s)ds+m mod 1)), (3.9)

where (O,m, l)∈ SO(n)×R×L. We define the metric on the tangent space of SO(n)×R×L
by ⟨(U1,b1,v1),(U2,b2,v2)⟩= trace(UT

1 U2)+b1b2+
∫ 1

0 v1v2ds. The Riemannian gradient of
f with respect to this metric is given in Lemma 3.1 without proof.

Lemma 3.1 The Riemannian gradient of f (O,m, l) in (3.9) is

grad f (O,m, l) = (PO(A),
∫ 1

0
y′ds,Pl(x−2yl)), (3.10)

where A denotes
∫ 1

0 η lqT
2 (

∫ t
0 l2(s)ds+m mod 1)ds, x denotes ⟨η ,O(q2(

∫ t
0 l2(s)ds+m mod 1))⟩2,

y′ denotes ⟨η ,O(lq′2(
∫ t

0 l2(s)ds+m mod 1))⟩2, η is the same as in (3.3) and Pl(v) = v−
l
⟨v,l⟩L2
⟨l,l⟩L2

.

In order to apply the LRBFGS algorithm in [4, Algorithm 2], we also need a retraction
and a vector transport. The chosen pair is the well-known exponential mapping and parallel
translation for each component (see e.g., [1]). They are given here for completeness. The
retraction is

R(O,m,l)(A,a,v) =
(

Oexp(OT A),m+a, l cos(∥v∥L2)+
v
∥v∥L2

sin(∥v∥L2)
)

(3.11)

and the vector transport is

T(A,a,v)((B,b,w)) =
(

Oexp(OT A/2)OT Bexp(OT A/2),b,w− 2⟨w, l̃⟩L2

||l + l̃||2L2

(l + l̃)
)

(3.12)

where A,B ∈ TO SO(n), a,b ∈ R, w,v ∈ TlL and l̃ = l cos(∥v∥L2)+ v
∥v∥L2

sin(∥v∥L2).
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4 Karcher Mean
The Karcher mean of shapes [qi], i = 1,2, . . . ,N is defined to be the minimizer of the cost
function

[q∗] = argmin[q]∈Ln

1
2N

N

∑
i=1

dist2Ln([q], [qi]). (4.1)

A representation of the gradient of (4.1) is given by 1
N ∑N

i=1 α̇i(1), where αi ⊂ ln is a repre-
sentation of the geodesic between [q] and [qi] such that αi(1) = q and αi(0) ∈ [qi].

The Riemannian steepest descent algorithm [1] is used to compute the Karcher mean of
shapes. The algorithm is sketched in Algorithm 3. The retraction is given by projection, i.e.,

q+ = Rq(v) = Pln(q+ v) (4.2)

where Pln is the projection defined by [13, Item 1].

Algorithm 3 Karcher Mean

Input: Curves βi, i = 1, . . . ,N and initial iterate β (0).
1: Compute the representations q(0) of β (0) and qi of βi, i = 1, . . . ,N in ln. Set k = 0.
2: Compute the geodesic αi between [qi] and q(k) such that αi(1) = q(k) and αi(0)∈ [qi] for

all i = 1, . . . ,N. The values of the cost function and its gradient are obtained during this
computation.

3: Apply the backtracking line search algorithm [2, Algorithm A6.3.1] and find the step
size λk and the next iterate

q(k+1) = Rq(k)(−λkζk), (4.3)

where ζk =
1
N ∑N

i=1 α̇i(1) is the gradient of (4.1).
4: If some stopping criterion is satisfied, then stop. Else, k← k+1 and goto Step 2.

5 Experiments
As shown in Step 2 of Algorithm 3, a geodesic is used for the cost function and gradient
evaluation. In this section, we test the performance of Algorithm 3 when the two approaches
in Sections 3.2.1 and 3.2.2 are used when computing geodesic.

The MPEG-7 dataset [14] is used in the experiments. It contains 70 clusters each of
which has 20 shapes, i.e., 1400 shapes in total. The Matlab function BWBOUNDARIES is
used to extract the boundary curves of the shapes and 100 uniformly-space points are chosen
to represent each shape. A path in lc

n is represented by 11 curves.
The tests are performed in Matlab R2014a on a 64 bit Ubuntu system with 3.6GHz CPU

(Intel (R) Core (TM) i7-4790).
Algorithm 3 with the approaches in Sections 3.2.1 and 3.2.2 are denoted by MeanCD

and MeanLRBFGS respectively. The stopping criterion of Algorithm 1 is
∫ 1

0 ∥w(τ)∥2
L2 dτ ≤

10−10. Both Algorithm 2 and LRBFGS run for 30 iterations. The step sizes t1 and t2 in
Algorithm 2 are chosen to be 0.5 and 0.001 respectively. Algorithm 3 stops when the step
size λk is less than 10−2. Note that it is observed that λk = 1 usually is the step size found
by the backtracking algorithm.
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Table 1: Computational time, number of iterations and final cost function values of reported
tests. t, iter and f denote computational time (second), number of iterations and final cost
function values respectively. The subscript −k indicates a scale of 10−k.

MeanCD MeanLRBFGS
t iter f t iter f

Figure 2 2.942 27 5.03−2 9.871 8 4.99−2
Figure 4 7.052 26 3.93−2 4.552 14 3.67−2
Figure 5 1.463 19 1.18−1 6.772 8 7.40−2

Karcher mean
mean (CD)
mean (LRBFGS)

iteration
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iteration
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l t
im

e

0

100

200

300
iteration vs time (second)

CD
LRBFGS

Figure 2: A representative test. The samples shapes, Karcher means by MeanCD and
MeanLRBFGS, cost function values and computational time are given.

Three representative results are reported in Figures 2, 4 and 5. As shown in the right
bottom figure in Figure 2 and Table 1, the computational time for each iteration are not
too different for MeanCD and MeanLRBFGS. Both algorithms provide reasonable Karcher
mean visually. In particular, Figure 3 shows the optimal rotation and reparameterization
between mean and each sample shape. Therefore, MeanLRBFGS is faster than MeanCD
and provide competitive results.

6 Conclusion and Future Work
In this paper, we consider computing the Karcher mean in the shape space of elastic curves.
Two approaches for computing the geodesics required have been given in [13] and [15] and
we compare their performance in computing the Karcher mean. It is shown that Algorithm 3
with the approach in [15] converges faster.

In the future, we will test the quality of the Karcher mean by MeanLRBFGS in the sense
of superior clustering, classification and stochastic analysis. The algorithm will be included
in the C++ Riemannian optimization library on http://www.math.fsu.edu/ROPTLIB.
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LRBFGS LRBFGS
LRBFGS

CD CD CD

Figure 3: The rotation and reparameterization between samples and mean shapes. The colors
of points on the two curves represent correspondence between two curves. The black stars
represent the start/end points of the curves. The means in top and bottom rows are given by
MeanLRBFGS and MeanCD respectively.

Karcher mean

mean (CD)
mean (LRBFGS)

Figure 4: A representative test. The samples shapes, Karcher means by MeanCD and
MeanLRBFGS are given.

Karcher mean

mean (CD)
mean (LRBFGS)

Figure 5: A representative test. The samples shapes, Karcher means by MeanCD and
MeanLRBFGS are given.
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