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Abstract

We describe a method for 3D reconstruction of plant seed surfaces, focusing on small
seeds with diameters as small as 200µm. The method considers robotized systems al-
lowing single seed handling in order to rotate a single seed in front of a camera. Even
though such systems feature high position repeatability, at sub-millimeter object scales,
camera pose variations have to be compensated. We do this by robustly estimating the
tool center point from each acquired image. 3D reconstruction can then be performed
by a simple shape-from-silhouette approach. In experiments we investigate runtimes, the
achieved accuracy, and show as a proof of principle that the proposed method is well
sufficient for 3D seed phenotyping purposes.

1 Introduction
Making image analysis methods available for plant phenotyping applications is currently
a driving force in plant sciences [41]. In many such applications the absence of suitable
image processing is even a bottleneck [29]. More than 100 specialized methods [26] and
software packages are available for image-based analysis of different plant parts, e.g. fruit
shape [8], single or multiple leaves [2, 9, 10, 11, 31, 34, 45, 47], hypocotyl and seedlings
[40, 46], shoot [4], rosettes [1, 3] and many more. Such analysis tools are needed in robotic
imaging platforms for high-throughput plant phenotyping [13, 14, 16, 22, 32, 44], but also
in affordable systems [28, 43].

Plant seed phenotyping is needed by seed banks for quality management e.g. concerning
breeding purposes, linking to germination rate or plant growth. For this, 2D scanning is a
popular, affordable technique [17, 30, 42, 48]. Several commercial software packages are
available for seed investigations using flat-bed scanners, e.g. [18, 19]. It has been applied
to different seed types, like Arabidopsis, soybean, barley, or rice. Typically parameters like
width, length, or area are calculated from the 2D images, but also more complex shape
measures like Fourier descriptors [20, 21].
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Figure 1: Overview of the reconstruction method. A Image acquisition from multiple view-
ing angles. B One of the acquired gray value images. C Mask image. D Estimation of
tool center point (TCP). E Estimate shape from silhouette by volume carving. F Surface of
reconstructed volume. G Tool removed from volume: seed red, tool blue.

3D measurements of seeds have been presented e.g. in [30], where CT scans of Ara-
bidopsis seeds are shown. However, to the best of our knowledge, no affordable 3D imaging
technique has been presented so far designed for seed measurements. Correspondence-based
techniques [35, 38, 39] reconstructing 3D models from multiple images, or other low-cost
techniques like laser scanning or the Kinect can be used for 3D whole plant reconstruction
[36]. However such techniques are not suitable for much smaller objects like seeds of rape-
seed plants (∼2 mm diameter) or even Arabidopsis seeds (∼0.2–0.4 mm length).

Here we investigate volume carving, a well-known shape-from-silhouette technique [25,
27, 37], for 3D seed shape reconstruction. It is a fast, reliable, and simple but robust method,
having been used in plant phenotyping before, e.g. 3D seedling reconstruction [24]. Depend-
ing on the selected viewpoints it approximates the convex hull of an object or reconstructs
even valleys and saddle-points, but cannot reconstruct true concavities. For the seed types in-
vestigated here, e.g. barley seeds (see Figure 1), true concavities seem to be of low relevance
for volume estimation.

2 Reconstructing Seed Shape from Silhouettes

Aiming at relatively simple, mostly convex seed shapes, target voxel resolutions needed to
describe such shapes are comparably low – as we will show in the experiments below, see
Section 4. Therefore, for this study, it is sufficient to apply one of the most basic volume
carving approaches.

We get the intrinsic camera matrix K [15] and the distance between the origin of our
working volume and the camera center from calibration (cmp. Section 3.2). The origin of
the working volume is selected to be the tool center point (TCP) of the robot system handling
the seeds, i.e. rotating them in front of the camera for imaging (cmp. Section 3.1).

We acquire N images, showing a seed under (equidistantly spaced) rotation angles αi
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where i ∈ {1, . . . ,N}, see Figure 1. Rotation is around the vertical axis through the TCP,
being parallel to the y-axis of the camera. We segment by gray-value thresholding each
image into a binary mask Mi being one at the foreground, i.e. seed and tool tip, and zero
at background locations. Small objects like noise are removed and small holes (e.g. the
reflection of the tool) filled.

For each image and thus segmentation mask we calculate the homogeneous camera pro-
jection matrix Pi, from the rotation angle αi by

Pi = K(Ri|~ti) (1)

where Ri is the rotation matrix corresponding to the given angle αi, and translation vector
~ti is calculated using the distance of the world origin to the camera center, also known from
calibration (see e.g. [15]). By this, the world coordinate frame rotates with the object, i.e.
the seed.

We define an equidistantly spaced, cubic voxel grid around the world origin, being large
enough to contain the seed. The thus defined working volume depends on the seed type. For
Arabidopsis we use (1 mm)3, for rapeseed (2.9 mm)3, and for barley and maize (13 mm)3.

Each voxel center with homogeneous world coordinates ~X is projected to a point ~xi in
each mask Mi by

~xi = Pi~X (2)

If ~X is projected to the background region of at least one of the N masks Mi, then this voxel
does not belong to the foreground object and its value V(~X) is set to 0, i.e.

V(~X) =
N

∏
i=1

Mi(~xi) (3)

Thus, if a voxel belongs to the foreground object, its value V(~X) is set to 1.
When higher voxel resolution is desired, and thus runtimes increase, parallelization of the

carving algorithm [7] is feasible (see Section 4.1). Even higher resolutions become available
on current desktop computer hardware, when hierarchically representing the voxel grid, e.g.
as an octree [23].

One of the main drawbacks of this simple carving algorithm is its sensitivity to imprecise
external camera calibration. When a mask Mi is misaligned and thus does not well overlap
with the ’true’ object volume, the non-overlapping parts are deleted from the volume without
further testing or corrections. We therefore apply an image-based camera pose calibration
step, as described next.

2.1 Correcting Camera Pose
Methods not adapting camera pose by estimating extrinsic parameters from the acquired
images are known to be particularly sensitive to (extrinsic) calibration errors, thereby re-
quiring precise positioning of the cameras (see e.g. [49]). For relatively large objects in the
multiple centimeter-range, say 20 cm long and filling most of an image, and typical pixel
resolutions, say 2000×2000, a pixel covers an object area 0.1×0.1 mm2. Position repeata-
bility of industrial-grade robotic systems, typically ≤ 20µm and ≤ 0.05◦ [12], is therefore
high enough for precise reconstruction. However, for objects being few millimeter in size
or even in the sub-millimeter range additional care has to be taken. The mathematical TCP
coordinates known to the robot control software may not coincide precisely with the physical
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Figure 2: Illustration of the extrinsic camera calibration correction. A–C Images of the same
barley seed taken from different angles. D Mask image generated from B. E Steps to find the
TCP: (1) find edges of gripping tool (red lines), stop when lines diverge (blue dotted line).
(2) xTCP is average of middle between found edge positions (red dotted line). (3) Trace edges
further as long as they come closer to xTCP (yellow lines). (4) Top most position is yTCP. The
found TCP is indicated by a yellow cross.

TCP at the tool tip, due to mechanical calibration inaccuracies, wear and tear, or small de-
formations of the tool. In our case, instead of being at a fixed location in the camera images,
the TCP moves on a more or less reproducible, elliptic trajectory of up to 200µm diameter,
varying with room temperature.

Before projecting the voxels to the mask images, we therefore adapt projection matrices
Pi. To do so, the truncated cone shape of the gripping tool has to be found, see Figure 2. As
larger seeds may partly occlude the tool tip, we search for a region of the tool being reliably
visible in the images. The tool enters the image vertically from below and becomes smaller
in diameter toward the true TCP, being the center point of the very tip of the tool. As we can
robustly find the tool’s left and right edges, we apply a simple and very fast procedure. We
calculate the visible width of the tool line by line starting at the bottom of the image, moving
upwards, i.e. in negative y-direction. We iterate while the width decreases and is larger than
the minimum tool width (being at the tip). The thus reached y-coordinate is taken as first
estimate of the TCP y-coordinate yTCP. A reliable estimate of the TCP’s x-coordinate xTCP
is established as the mean of all found left and right edge x-positions. As the tool tip may be
partly occluded by the seed, yTCP needs refinement. For this the left and right tool edges are
independently tracked further until the narrowest point is reached, i.e. the rightmost point of
the left edge, and the leftmost point of the right edge. The smallest y-value (highest point) of
the two points is taken as new yTCP.

For small seeds like Arabidopsis this procedure works reliably, as the seeds are too small
to occlude the whole tool tip in an image. For larger seeds, we use the observation that the
TCP’s elliptic trajectory results in its y-coordinates to describe a sinusoidal curve over the
rotation angle. We therefore robustly fit a sin-curve to the y-coordinates and correct outliers
according to the fit result.

For such small objects, the optical lens setup (cmp. Section 3) features a narrow opening
angle (i.e. large zoom), like a microscope at 1-to-1 magnification. This means lines of sight
are almost parallel and thus depth effects are negligible. This allows to update Pi with~xTCP
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by simply setting the principal point [15] to~xTCP.
When even higher precision of the camera pose would be needed, gradient descent-based

algorithms optimizing camera pose may be applied as a refinement step, e.g. [49].

2.2 Removing the Tool from the Seed
For small seeds not overlapping with the tool, the TCP lies precisely in the world origin,
i.e. the origin of the reconstructed voxel block. Thus voxel above the TCP contain the seed,
voxel below (which in that case we do not reconstruct) contain the tool. In cases where seed
and tool may overlap (see e.g. Figure 2), the tool tip is also reconstructed. It can be removed
from the volume data using its known position, orientation, and physical size by deleting the
corresponding voxel volume.

Alternatively, at high voxel resolutions, where the reconstructed volume covered by the
tool may be affected by noise, one can estimate the tool position from the reconstruction.
Summing up voxel values of horizontal planes in the bottom region of the volume gives
reliable estimates of the area of horizontal cuts through the tool. While the areas decrease
when summing over higher and higher planes, the planes are deleted from the data. Then,
when areas no longer decrease, using these areas, we estimate the y-position of the truncated
cone using a least squares fit and remove the thus covered volume.

3 Materials and Methods

3.1 Imaging
Depending on seed size for 3D reconstruction we use two different setups for image acqui-
sition. Both setups consist of an industrial-grade c-mount camera (PointGrey Grasshopper,
GRAS-50S5M-C, Mono, 5.0 MP, Sony ICX625 CCD, 2/3", square pixels of size µ =3.45µm,
global shutter, 2448× 2048, 15 FPS), 35 mm high precision lens (Schneider KMP APO-
XENOPLAN 35/1,9) and a white LED ring with diffusor (CCS LDR2-70-SW2) shown in
Figure 3. For small seeds (e.g. Arabidopsis, tobacco, rapeseed) a 36 mm spacer is mounted
between camera and lens. For larger seeds (e.g. barley, maize) only a 15 mm spacer is needed.
Spacer reduce the minimum working distance of the lens (69.9 mm for the 36 mm spacer,
128.0 mm for the other) and thus are responsible for suitable magnification. This allows to
measure seeds in a range between ≈0.2 mm and 12 mm. White paper is used as background.

For image acquisition seeds are picked by a cone-shaped vacuum nozzle and held in front
of the camera at optimal working distance using a robotic system to be described elsewhere.
The robot rotates the seed in configurable angles and triggers the camera. We use 10◦ steps
and take 36 images.

3.2 Camera calibration
We use the OpenCV implementation [6] of Bouguet’s calibration method [5] and an asym-
metric 4× 11 dot-pattern target with a total size of 5.8× 4.3 mm. It was printed using a
professional, high resolution film recorder, as usual office printers even on good paper do
not achieve a printing precision suitable for camera calibration at such small spatial scales.

Using this toolbox, estimation of the focal length f is not precise enough for our pur-
poses. We therefore use a ball-bearing ball (steel, precision according to DIN5401 G20)
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Figure 3: Camera setup for 3D imaging

with r0 =1.50 mm ±0.25µm radius as calibration object, in order to estimate the working
distance d (or equivalently focal length f from working distance d) of our system precisely.
From a mask image of the ball acquired with our system, we estimate its area A in pixel.
This allows to estimate its radius r in the image by r = µ

√
A/π , where µ is the pixel size.

From basic geometric reasoning working distance d can be derived as d =
√

f 2 + r2 r0/r.

3.3 Software Implementation

The software framework is implemented in C++ on a Windows 7 operating system with Vi-
sual Studio 2013. The application programming interface Open Graphics Library (OpenGL
[33]) was used for the GPU implementation.

4 Experiments

4.1 Resolution and Runtime

The complexity of the volume carving algorithm is proportional to the number NV of voxels
and number N of images acquired. For our equidistantly spaced cubic R×R×R grids the
voxel number is NV = R3 and thus complexity is O(R3N). In addition time for loading (or ac-
quiring) the images (with NP pixels) and, for the GPU implementation, transferring the data
to and from the graphics card is needed. Complexity of this data transfer and preprocessing
of the images is O(NPN), or O(NPN)+O(R3) for the GPU implementation.

Runtimes shown in Figure 4D have been measured on a PC with Intel Core i5-3470 CPU,
8GB DDR3 RAM and an NVIDIA GeForce GTX 580 GPU with 4047MB GDDR5 RAM
(cmp. [7] for further details). We observe that for low resolutions R of the voxel grid, runtime
contributions by the O(NPN) components dominate, as no dependence on R is visible. For
increasing R, these parts become negligible. While for the CPU implementation a significant
increase of the runtime versus the 2 seconds runtime for smallest voxel resolutions can be
noticed at R = 256 (4 s), the parallel GPU implementation stays at comparable runtimes even
at R = 512.

When interested in a seed’s volume as a trait used for high throughput phenotyping,
rather than subtle surface details, voxel resolution can be selected comparably low. In Fig-
ure 4A-C we show a barley seed and its reconstructions together with its derived volume
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Figure 4: Performance of the proposed method. A Original image of a barley seed. B
Reconstructions of the seed at different grid resolutions. C Reconstructed volume versus
resolution of the voxel grid. D Runtimes in seconds of serial CPU and parallel GPU imple-
mentations (reproduced from [7]). E Reconstructed volume versus number of images used.
F Reconstructions of the seed using different numbers of images.
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Figure 5: Reconstructed seeds shown from different angles, side-by-side with the original
images (R=256, N=36).

for different grid resolutions R. We observe that above R = 256 the estimated volume is
approximately constant. Thus, for this phenotyping task, runtime is limited mainly by file-
IO, transfer and preprocessing. Sophisticated speed-up mechanisms for the carving provide
rather low benefits in this application, as their main potential lies in higher achievable volume
resolutions.

Speedup using fewer images may be paid by lower accuracy. We show reconstructions
of the same barley seed in Figure 4E and the corresponding volumes in Figure 4F. Im-
ages are selected equidistantly. We observe that reducing image number rapidly reduces
reconstruction quality. Interesting to note is that the reconstruction using N = 9 images is
more accurate than with N = 12 images. This is due to the fact that for N = 12 the se-
lected angle between images is α = 30◦, thus 180◦ is a multiple of α (the same is true for
N ∈ {4,6,12,18,36}). However, as the opening angle of our lens is small, complementary
information content in masks coming from cameras looking in opposite direction is low. We
conclude that for shorter runtimes with comparable or even higher reconstruction accuracy
investigating alternative viewing directions is promising.

4.2 Seed Types and overall Accuracy

Using the proposed method we reconstructed different seed types, namely Arabidopsis (length,
i.e. longest dimension . 0.5 mm), rapeseed (≈ 2 mm), barley (≈ 8 mm), and maize (≈
11 mm). See Figure 5 to get an impression of the usually achieved reconstruction accuracy.

Absolute accuracy is validated using two different test objects. The first one is the ball-
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bearing ball we used for working distance calibration with 3.00 mm ±0.5µm diameter, i.e.
0.02% diameter tolerance, and thus a precisely known volume of 14.137 mm3± 0.007 mm3,
i.e. 0.05% volume tolerance. Clearly, as we use this object for calibration, scaling of the mask
images exactly fit to the respective projection matrices Pi. However the overall performance
of the system can still be evaluated using this object, as the volume derived has not been
used for calibration and still accumulates all errors and imperfections the method has. The
second object is an ink cartridge ball with 2.45 mm ±0.02 mm diameter , i.e. 0.4% diameter
measurement error, measured with a digital sliding caliper, and thus a volume of 7.70 mm3±
0.094 mm3, i.e. 1.2% volume error.

Reconstructing the balls using 36 images, a voxel grid resolution of 2563 and (12µm)3

voxel size, yields a volume of 14.15 mm3 and thus a mean radius of 3.0008 mm for the bear-
ing ball. This is a relative error wrt. the specified volume and diameter of 0.08% (volume)
and 0.03% (diameter). For the ink cartridge ball we measure 7.83 mm3 corresponding to a
mean radius of 2.46 mm, being well within the measuring error of our caliper measurement.

By construction, imperfections of the system always result in a loss of volume. Without
such errors, we expect to slightly overestimate the volume of the objects we measure, as we
carve the volume from the outside – additional images lead to additional loss of volume,
cmp. Figure 4E. Slightly overestimating the volumes of the ball targets is therefore a sign for
good performance of the calibration and TCP position correction procedures.

We conclude that the overall accuracy of our method, including camera calibration er-
ror, mechanical imperfections, TCP finding error, imprecision due to the simple carving
approach etc. is high enough to compete with or even beat a precise slide caliper for length
measurements. Measurement errors of volume and lengths are well below 0.1%.

5 Conclusion and Outlook
Simple volume carving combined with a method for extrinsic camera pose estimation from
images is sufficiently accurate for size measurements of even tiny seeds. To optimize our
system for runtime and accuracy, we investigated its performance using different param-
eter settings. Surprisingly, the main performance gain potential does currently not lie in
using more sophisticated reconstruction methods allowing for higher achievable voxel reso-
lutions R, e.g. achievable by [23] and necessary for reconstruction of more complex surfaces.
Reducing preprocessing and transfer times by reducing image number N and pixel resolution
seems more promising.

The method’s achievable accuracy has been tested using a spherical object and systematic
errors are much lower than we expected. Clearly, as seeds are not well represented by a ball,
such accuracy studies give insight in the accuracy potential of the method – if it fails on a
ball, it will also fail on more complex shapes.

As seed-shape-specific errors are not well captured by a ball, we plan to build more seed-
like objects for ground-truth measurements. Alternative simple volume measurement meth-
ods, e.g. Archimedes’ principle, are not accurate for such small objects, but high-resolution
CT may be an option. Furthermore with a mathematical simulation the over-estimation of
the reconstruction can be approximated and used to improve ground truth measurements.

Many factors influence the accuracy, e.g. segmentation errors, small dust particles or
camera pose errors. Most critical are inaccuracies of xTCP and yTCP in the image, leading to
parts of a seed being erroneously carved away. To detect such errors, we plan to implement
suitable error estimation, e.g. summing back-projection error.
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