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Abstract

We develop a novel probabilistic model for multi-part shapes based on Gaussian pro-
cesses, which we apply to model rosette leaves of Arabidopsis plants. Our model incor-
porates domain knowledge of Arabidopsis leaves in two ways. First, leaves are modeled
using two anatomical parts: a blade and a petiole. We model the two regions with sep-
arate Gaussian processes, with a smoothness constraint at the boundary. Second, we
constrain all leaf petioles to initiate at the rosette center, which is also modeled. This
Bayesian prior is combined with a simple likelihood function over foreground pixels
to perform image segmentation by optimizing a posterior distribution. A simple data-
driven approach is used to over-segment the image, then excess leaves are pruned using
a Bayesian model selection criterion. We show that our approach is effective, even with
minimal training data.

1 Introduction

The relationship between genetics and observable traits (phenotypes) is a central question
in biological research. This interest has been driven by advances in inexpensive high-
throughput genotyping methods, which has exposed a lack of phenotyping methods that
are similarly efficient, inexpensive, and high-throughput. Rapid, inexpensive, and minimally
invasive methods have been developed for collecting biological image data, and the need for
efficient methods for analyzing this data is now paramount [9].

We present an approach for segmenting Arabidopsis rosette leaves using a new proba-
bilistic 2D shape model based on Gaussian processes (GPs). Rosette segmentation using
appearance alone is difficult in this scenario due to the subtlety of boundary cues and con-
founding leaf texture. Using a strong shape model can significantly improve segmentation
when image evidence is weak.

Our model incorporates domain knowledge of Arabidopsis leaves in two ways. First,
leaves are modeled as having using two anatomical parts: a blade and a petiole. We propose a
piecewise Gaussian process that models the two regions as conditionally independent, given
the transition points between them. This provides a better fit to the training data compared to
a single GP, by allowing the blade region to vary more widely than the petiole. Second, we
constrain all leaf petioles to initiate at the rosette center, which is also modeled. The result
is a set of smooth leaves of varying shapes and sizes whose boundaries are c0 continuous at
the petiole tip and c1 continuous everywhere else. We use this probabilistic shape prior in
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conjunction with a simple foreground-based likelihood function to infer a set of rosette leaf
shapes for a testing image, from which an image segmentation is obtained.

One problem inherent to segmentation is the question of how many segments are opti-
mal? Some approaches use heuristic penalties on shape size or segment count to prevent
over-segmentation, but these often do not generalize well to new datasets. Instead, we pose
this as a problem of Bayesian model selection and propose an efficient method for comparing
segmentations using the marginal model posterior. This requires evaluating an intractable in-
tegral; we propose an approximation that exploits our shape model’s Gaussian form, allowing
the integral to be estimated analytically.

We first describe the Gaussian process leaf model, the foreground likelihood model, and
the training process for both. We then outline a simple method for inference based on an ini-
tial over-segmentation, followed by a pruning step to maximize the marginal model posterior.
The general framework we outline here is a proof of concept — the fact that it works well
despite a weak likelihood function and simple inference algorithm shows the effectiveness
of our shape model in the face of challenging circumstances.

2 Related work

Image segmentation continues to be a topic of great interest in computer vision, despite
decades of research. One reason for this is that many segmentation tasks are based on
domain-specific criteria, so no single segmentation algorithm can solve every problem. Many
general-purpose approaches use Markov random fields (MRFs) to model interactions be-
tween neighboring regions and image evidence, and they use graph-theoretic algorithms for
inference; for a survey, see Peng et al. [12]. Most of these techniques only incorporate very
weak prior knowledge during segmentation, like a preference against small segments or in
favor of smoothness within segments and boundaries at strong edges [1, 7, 14]. Tu and Zhu
pose segmentation as Bayesian inference, learning appearance models for several different
region types and Bayesian priors over boundary smoothness, region size, and number of re-
gions [18]. Gaussian processes have been applied to Bayesian segmentation problems only
recently. In one formulation, segments are modeled as level sets of multiple intersecting
Gaussian process surfaces. This allows for nonlocal interactions and generalizes to scenes
with varying complexity [3, 16]. Like us, the authors approximate the marginal posterior to
compare segmentations of varying dimension, but they use a different approximation based
on variational inference. Active shape models [2] model deformable shapes using a prob-
abilistic framework. During training, a low-rank Gaussian model is learned from aligned
training shapes with manually-chosen landmark points. The resulting model captures high
dimensional modes of variation, which are used to deform a mean shape to fit image data.
This model was applied to analyze leaf shape by Weight et al. [19], and Zhang et al. use
a similar Gaussian model for 3D leaf petals [21]. Laga et al. propose a method for align-
ing leaf shapes that obviates the need for manually-chosen landmark points [8]. Our shape
model also learns a Gaussian model from aligned shapes, but instead of estimating a full
N⇥N covariance matrix, we estimate a covariance function that can represent a wide variety
of leaf deformations with only a few parameters. As a result, our model is less prone to
overfitting when training data is minimal and is robust to partial occlusion of the training
shapes.

Automatic leaf segmentation has seen increasing interest in recent years. Minervini
et al. propose an approach to the simpler problem of binary segmentation of Arabidopsis
rosettes from background. They use an active contour model using a level-set representation
but with a prior over foreground location, not shape [10]. Shape regularization is accom-
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(a)

Petiole Blade

(b) (c)
Fig. 1: (a) Example of training shapes (solid white). Only leaves with unoccluded blades
were used (104 shapes); all shapes exhibit occlusion of the petiole. (b) Leaf shapes have a
petiole and a blade region. Training shapes are aligned by rosette center (red plus) and rotated
so the center of mass (yellow star) lies on the +x axis. Shape contours are parameterized
based on four landmark points: the petiole tip z(�p) = z(p) (red cross), the blade tip z(0)
(orange triangle), and region transition points z(�p/2) and z(p/2) (blue dots). Occlusion
boundaries (magenta squares) vary by training shape and are parameterized by proximity to
the petiole tip. All other points are parameterized by linear interpolation. (c) Four samples
from the trained shape prior (2) (solid red) with learned mean shape (dotted black).

plished by Gaussian smoothing in post-processing, and so it does not influence the optimiza-
tion process. Cerutti et al. model leaf shape using a four-parameter polygon model and with
inference based on active contours to segment images containing individual leaves. Regular-
ization is imposed heuristically to avoid unnatural shapes [5]. Our approach is in a similar
vein, but with a nonparametric probabilistic shape model, a regularizing prior learned from
training shapes, and a task of multi-leaf segmentation, not single-leaf. Teng et al. segment
multiple leaves using several closely-spaced views to recover 3D point clouds. Segmenta-
tion is then performed using both 2D and 3D data together, yielding high quality results [17].
Pape et al. perform 2D multi-leaf segmentation using a nonparametric color model for initial
binary segmentation; leaf centers were estimated by local maxima of the foreground image’s
distance transform [11]. However, for segmentation, that approach uses features of the fore-
ground mask that are absent when leaves overlap significantly. We argue that stronger shape
models will be needed to see further gains on this task.

3 Prior and likelihood

3.1 Prior

We have developed a probabilistic shape model based on random functions with Gaussian
process priors. A random function f (t) : T ! F is a random mapping from input space
T to output space F . It may be interpreted as a set of random variables that are indexed
by the input t. For continuous functions, the number of random variables is uncountably
infinite, and we model them with a Gaussian process (GP) prior, which is an extension of
the Gaussian distribution to uncountably infinite sets of random variables. The defining
property of the Gaussian processes is that any finite subset of random variables is Gaussian
distributed. A GP is defined by two functions: a mean function µ(t) that gives the mean of a
random variable z(t) for any t 2 T ; and a covariance function k(t, t 0) that gives the covariance
between any two random variables z(t), and z(t 0).

We represent shape by a vector-valued random function, z : (�p,p] ! R2, where the
two output dimensions correspond to x and y coordinates of the 2D shape boundary. It is
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convenient to represent the vector-valued shape function as a scalar-valued function with an
extra input representing the output dimension of interest, z : (�p,p]⇥ {1,2} ! R, where
z(t,1) represents the x dimension and z(t,2) represents the y dimension.

We place a Gaussian process prior over z,

z(t,d)⇠ GP
�
µ(t,d),k(t,d, t 0,d0)

�
, (1)

where k() is a covariance function defined in Sec. 3.2 and the mean µ() is learned from data
in Sec. 4. Modeling a continuous random function explicitly is impractical, so we select a
finite subset of the input space ttt = (t1, . . . , tn) and model the corresponding random variables

zzz = (z(t1,1), . . . ,z(tn,1),z(t1,2), . . . ,z(tn,2))> .

These random variables represent the (x,y) coordinates of sampled points on the shape
boundary. We choose ttt to be 100 values uniformly spaced in (�p,p], which is dense enough
to capture fine detail in leaf shapes. By properties of Gaussian processes, the resulting 200-
dimensional random variable is Gaussian distributed

zzz ⇠N
✓

µ
x

µ
y

�
,


Kx 0

0 Ky

�◆
, (2)

where

µx,i = µx(ti,1), µy,i = µy(ti,2), (3)
Kx,i j = k (ti,1, t j,1) , Ky,i j = k (ti,2, t j,2) . (4)

The shape model also has an angle parameter f , which has uniform distribution p(f) =
U(0,2p). Rotation is not well modeled by Gaussian processes, so the GP is learned using
shapes aligned to a default orientation, and the angle parameter models rotation of the aligned
shape around the rosette center.

Multiple leaves are treated as independent. Let Z = {zzz1, . . . ,zzzn} be a set of n independent
leaf shapes zzzi with angles F = {f1, . . . ,fn}. The full shape prior is then

p(ZZZ,F) = p(ZZZ)p(F) = ’
i

p(zzzi)p(fi). (5)

The model assumes all leaves initiate at the rosette center, c 2 R2, which is uniformly dis-
tributed over image dimensions W ⇥H,

p(c) = 1/(WH) c1 2 [0,W ), c2 2 [0,H). (6)

The rosette center variable acts as a global translation transformation when rendering the
shapes in the likelihood function. The full prior is then,

p(c,ZZZ,F,) = p(c)p(ZZZ)p(F). (7)

3.2 Multi-region covariance function

The GP covariance function controls properties of a random shape’s variation from the mean.
We tailor a covariance function specifically to Arabidopsis leaves by applying standard co-
variance functions in four ways: (1) summing covariance functions; (2) applying different
covariance functions in different shape regions; (3) adding constraints to specific points; and
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(4) transforming the covariance function’s input space. These techniques allow our model
to generate a wide variety of realistic leaf shapes with relatively few training parameters.
Because training shapes are aligned with the x-axis, the x and y dimension exhibit different
random characteristics, which we model independently. Below we construct a covariance
function that is applied to both dimensions but with different trained parameters.

Leaves are modeled with two semantic regions, the blade and the petiole (see Fig. 1b).
Shape functions are parameterized so z(0) is the extreme tip of the blade, z(p) is the tip of
the petiole, and the transitions between regions are z(�p/2) and z(p/2). We model the two
regions with different covariance functions that are joined smoothly at the transition points.

We start by defining the petiole and blade covariance functions,

kp(t, t 0) = l 2
p km(t, t 0,sp), (8)

kb(t, t 0) = l 2
b1km(t, t 0,sb1)+l 2

b2km(t, t 0,sb2), (9)

where km is the Matern kernel with v = 3/2 [20],

km(t, t 0,s) =

 
1+

p
3|t � t 0|

s

!
exp

 
�
p

3|t � t 0|
s

!
. (10)

The Matern kernel generates functions that are c1 continuous, and the parameter s controls
the smoothness scale. The blade region’s covariance (9) is the sum of two Matern kernels,
allowing for large- and small-scale variation to occur simultaneously. Only one Matern term
is used for the simpler petiole region.

To combine the two region covariances, we use the “Markov link kernel” of Reece et
al. [13], constraining the random functions to be c1 smooth at the transition point. Define

∂k(t, t 0) =
∂

∂ t 0
k(t, t 0) and ∂∂k(t, t 0) =

∂∂
∂ t∂ t 0

k(t, t 0). (11)

Let ttt0 = (�p/2,p/2)> to be the indices of the transition between regions. The Markov link
kernel for the two regions is

k0(t, t 0) =

8
>>><

>>>:

kb(t, t 0)+gb(t)(Kc �Mb)gb(t 0)
> t, t 0 2 (�p/2,p/2]

kp(t, t 0)+gp(t)(Kc �Mp)gp(t 0)
> t, t 0 62 (�p/2,p/2]

gb(t)Kcgp(t 0)
> t 2 (�p/2,p/2], t 0 62 (�p/2,p/2]

gp(t)Kcgb(t 0)
> otherwise,

(12)

where
g⇥(t)=

⇥
k⇥(t, ttt0) ∂k⇥(t, ttt0)

⇤
M�1

⇥ , M⇥=


k⇥ (ttt0, ttt0) ∂k⇥ (ttt0, ttt0)

∂k⇥ (ttt0, ttt0) ∂∂k⇥ (ttt0, ttt0)

�
,

and Kc = diag
�⇥

s2
0 s2

0 s2
1 s2

1
⇤�

. Here, s2
0 is the variance of the transition points and

s2
1 is the variance of their first derivative.

The petiole always initiates at the rosette center, so we constrain the initial petiole point
and its derivative to have zero variance,

k1(t, t 0) = k0(t, t 0)�g0(t)M�1
0 g0(t 0)>. (13)

We also want the shape to scale and bend from tip to tip. For this we add two linear terms
with transformed inputs,

k2(t, t 0,d) = k1(t, t 0)+llmkL(µ(t, t 0,d),µ(t, t 0,d))+llckL(cos(t/2),cos(t 0/2)) (14)
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where kL(t, t 0) = tt 0 is the standard linear covariance function. The middle term transforms
the inputs of kL by the mean function µ(), which generates random offsets proportional to
the mean shape. The second term transforms kL by a sinusoid, which models variation in the
blade tip while the petiole tip remains stationary.

Both the x and y dimensions are modeled using covariance function of the form (14),
substituting 1 and 2 for the d input, respectively. Let k2,x be the shape covariance in the x
dimension, with parameters

(s0,x,s1,x,sp,x,lp,x,sb1,x,lb1,x,sb2,x,lb2,x,llm,x,llc,x).

Similarly, k2,y is the shape covariance in the y dimensions, with parameters

(s0,y,s1,y,sp,y,lp,y,sb1,y,lb1,y,sb2,y,lb2,y,llm,y,llc,y).

Because variation in the x dimension is simpler than in the y dimension, in practice we set
lb2,x, sb2,x, and s1,x to zero. The resulting full shape covariance function has 17 parameters,
which are learned from training data in Section 4.

3.3 Likelihood

If image evidence is sufficiently informative, it can be difficult to assess the prior’s effective-
ness, because the likelihood dominates. Our goal is to demonstrate a strong shape prior, so
we choose a likelihood function that uses only known foreground masks as evidence. Such
masks are provided by the 2015 CVPPP Leaf Segmentation Challenge dataset. Let D = {di}
be the binary foreground mask with N pixels di 2 {0,1}, where 1 denotes foreground. Let
P be the space of closed 2D polygons. We define a rendering function r : PM ! {0,1}N

that maps M shape polygons zzzi 2 P to a rasterized binary map by setting all pixels lying on
the interior of any polygon to one and all other pixels to zero. The likelihood function is a
product of i.i.d. terms over all pixels,

p(D|ZZZ) = ’
i

p(di|fg)ri(Z)p(di|bg)1�ri(Z) (15)

where p(di|fg) and p(di|bg) are Bernoulli distributions with parameters µfg and µbg, re-
spectively. During inference, this likelihood gives strong preference to leaf shapes whose
rendering overlaps maximally with white pixels in the foreground mask and minimally with
black pixels. Our general approach permits more sophisticated likelihood functions (e.g.
using color or texture), but the foreground likelihood is simple to train and is sufficient to
illustrate the effectiveness of our shape model.

4 Training

For training, we selected 104 example shapes across 28 rosettes. Data was obtained from
the CVPPP Leaf Segmentation Challenge dataset A1 [15], which provides individual leaf
segmentation for 128 rosettes. Leaf segments without occluded blades were manually chosen
in each of 28 training rosettes. Polygon shapes were obtained from boundary pixels on each
selected leaf segment. Some example training shapes are shown in Fig. 1a. The location of
the rosette center was labeled in each image and transition between petiole and blade regions
were labeled for each training shape.

Shapes were rotated and translated so the rosette center lies at the origin and the shape’s
center of mass lies on the positive x-axis. The left part of the petiole is occluded in most
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training shapes, so we discard the leftmost 10 points so training shapes do not include oc-
clusion boundaries. The result is an open polygon with a start and end point, with points
ordered counter-clockwise.

The points of each training polygon were parameterized as described in Fig. 1b, so the
petiole tip, blade tip, and bottom and top transition points correspond to z(p), z(0), z(�p/2),
and z(p/2), respectively. Endpoints of the observed shape polygon (magenta squares in
Fig. 1b were assigned indices as follows. Let d1 (resp. d2) be the distance from the first
(last) polygon point to the origin, and let L1 (L2) be its Euclidean distance from the blade tip,
z(0). The first and last polygon points are assigned indices �(1�d1/(d1 +L1))p and (1�
d2/(d2 +L2))p , respectively. All other points are assigned indices by linearly interpolating
between these six landmark points.

4.1 Training the prior

The prior training procedure is detailed in the supplemental material. Briefly, the GP prior
mean was obtained by averaging the training polygons. The 17 prior covariance parameters
were optimized using maximum marginal likelihood [20]; the x and y dimensions were
trained independently, and we developed a method to update parameters in blocks to mitigate
local minima (see supplemental material).

4.2 Training the likelihood

The Bernoulli likelihood parameters µfg and µbg are trained from ground-truth foreground
segmentations using maximum likelihood. We set µfg is set to the percentage of training
foreground pixels overlapping with foreground pixels in the corresponding original mask,
after dilating the training mask by two pixels. Similarly, µbg to the percentage of background
training pixels that overlap foreground pixels in the original mask, after eroding the training
mask by two pixels. Since the training data is effectively noise-free, this dilation and erosion
adds some tolerance for imperfect fitting around the boundaries. The choice of two pixels of
dilation is made empirically; using a larger value allows the inferred shape to stray farther
into regions lacking evidence, while using a smaller value forces inferred shapes to be nearly
exact, which tends to overfit.

5 Inference

We use a data-driven approach to hypothesize leaf shapes, and use local minimization to
find the maximum posterior configuration of the hypothesized shapes. Later, we derive a
Bayesian model selection criterion and use it to prune spurious shapes. We estimate the
rosette center c by taking the morphological skeleton of the foreground mask, converting it
to an adjacency graph, and choosing the vertex with minimal eccentricity. We then measure
the distance from each foreground point to c and select extreme points {pi} whose radius is
a local maximum. For each pi, we construct a shape zzzi and rotation qi so the blade’s tip z(0)
lies on pi and the petiole’s tip z(p) lies on c. Given this initial model (ZZZ,F,c), we estimate
the maximum posterior,

argmax
(ZZZ,F)

p(ZZZ,F|D) µ p(D|ZZZ,F,c)’
i

p(zzzi). (16)

Given N hypothesis shapes with 100 points each, this is an optimization problem in 200N+1
dimensions, but the effective dimension is much lower. Let K =UDU> be the eigendecom-

Citation
{Williams and Rasmussen} 2006



8 KYLE SIMEK AND KOBUS BARNARD: GAUSSIAN PROCESS SHAPE MODELS

Method Dice (%) Symm. Dice (%) Count Err. Abs. Count Err.
Ours 86.5±7.4 68.6±8.1 �4.3±1.8 4.3±1.8

Pape et al. [11] N/A 74.2±7.7 �1.9±2.5 2.6±1.8
Tab. 1: Segmentation results. The Dice metric measures overlap between the testing and
ground truth segmentations, averaged over all testing images. “Symm. Dice” is the sym-
metric best Dice metric. For details, see Scharr et al. [15]. Note that Pepe et al. is evaluated
on 128 training images, wheras we evaluate on 90 held-out images. “Count Err.” and “Abs.
Count Err.” are equal, because all count errors are negative.

position of the shape prior covariance matrix from Eq. (2), which defines a shape-space U>zzz
whose dimensions are uncorrelated. Eigenvalues in D less than 0.25 have less than one pixel
of random variation, so they are discarded along with the corresponding columns of U ; in
our model the resulting space has 25 dimensions per shape. The optimization (16) converges
much faster when run in this reduced space. To further improve optimization speed, each
shape is optimized independently in a first pass, before optimizing all shapes jointly.

The initial model estimate is likely to have false positive leaves, so we next apply pruning.
Bayesian posterior densities of differing dimension cannot be compared directly, so applying
a maximum posterior criterion for pruning is invalid. Instead, we compare the marginal
posteriors of the different models, after integrating out all continuous parameters. The model
is characterized by the number of segments N = |Z|. The marginal posterior of N is

p(N|D) =
Z

p(N,ZZZ,F|D)d(ZZZ,F) (17)

= p(N)
Z

p(ZZZ,F|N)p(D|ZZZ,F)d(ZZZ,F). (18)

For simplicity, we model the prior p(N) as uniform with infinite support and omit it from the
computation. The integral (18) is intractable in general, but for a fully linear Gaussian model
it can be computed analytically. Our prior is Gaussian, but the likelihood is nonlinear, so
exact analytical evaluation is not possible. Instead, we apply the Laplace approximation [4],

p(N|D) = p(N)p(Z̃ZZ,F̃|N)p(D|Z̃ZZ,F̃)(2p)d/2
N

’
i=1

��K�1 +Y�1
i
��1/2

, (19)

where (Z̃ZZ,F̃) are the maximum posterior parameters from (16), and Yi is the Hessian of the
likelihood (15) w.r.t. (zzzi,qi), evaluated at (Z̃ZZ,F̃). The Laplace approximation gives the exact
solution to (18) under an approximation of the likelihood as Gaussian. We use numerical
differentiation to approximate each Yi as a diagonal matrix.

To remove false positives, we propose pruning each leaf in the model sequentially, ac-
cepting the proposal if the marginal model posterior (19) improves. This simple inference
procedure works reasonably well in practice, and it illustrates a general framework that can
be applied to much more sophisticated inference strategies. For example, adding birth pro-
posals could improve the false-negative rate, and split and merge moves could fix under- or
over-segmented regions, respectively.

6 Experiments

We tested our model on the A1 training set of the CVPPP 2015 Leaf Segmentation Challenge
(LSC) dataset [15]. The dataset has 128 images with ground-truth segmentations. We used

Citation
{Pape and Klukas} 2015

Citation
{Scharr, Minervini, Fischbach, and Tsaftaris} 2014

Citation
{Gilks, Richardson, and Spiegelhalter} 1995

Citation
{Scharr, Minervini, Fischbach, and Tsaftaris} 2014



KYLE SIMEK AND KOBUS BARNARD: GAUSSIAN PROCESS SHAPE MODELS 9

Fig. 2: Example segmentation output by our algorithm (best viewed in color). Left: Raw
segmentation. Middle: Segmentation after applying foreground mask. Right: Ground truth
segmentation. Most errors result from mistakes made by our initialization heuristic, which
could be fixed by additional trans-dimensional moves. For example, few interior leaves are
found, which could be corrected by adding random birth moves.

the first 28 images to train our model. The next 10 images were used to tune the optimization
procedure. We evaluated our algorithm on the last 90 images.

To evaluate, a segmentation is generated from the shape model as follows. Beginning
with a W ⇥H map of zeros, the shapes are ordered by decreasing area and render shapes in
order using the painter’s algorithm [6]. Each shape is drawn with a pixel intensity equal to
its ordinal number in the sorted list. As a result, small leaves appear in front of larger leaves,
as they tend to appear in Arabidopsis rosettes.

Segmentation performance is evaluated using the three Leaf Segmentation Challenge
metrics [15]. Results are summarized in Table 1, and an example segmentation is shown in
Fig. 2. Errors arise from two main causes. First, segment count is consistently underesti-
mated, because the leaf proposal strategy targets only exterior leaves, missing interior leaves.
Results could be improved by using additional cues for proposals or just randomly sampling
shapes from the prior. Errors also occur when the rosette center is estimated wrongly, which
could be improved by optimizing it jointly with the shape polygons.

Recall that our method uses foreground masks as weak evidence and a rudimentary
bottom-up method for proposing shapes. This forces segmentations to be informed primar-
ily by the prior shape model. Results show that our shape model is effective at estimating
segmentations despite weak evidence, showing its promise as a general purpose leaf prior.
Although Pape et al. achieve better results, they do so using a strong appearance model, more
sophisticated mechanism for proposing segments. Our shape model could be incorporated
into approaches like theirs to identify unnaturally shaped segments and to estimate shape
boundaries when edge evidence is absent.

7 Conclusion

We have described a novel probabilistic model for multi-part shapes using piecewise Gaus-
sian processes. We use prior knowledge to add constraints to our model, which contributes
robustness to partial occlusions during training and testing and helps the model generalize
despite relatively few training examples. We apply this model in a simple Bayesian frame-
work for model-based image segmentation and show that it is effective at distinguishing
individual leaves, even with partial occlusion and a weak evidence model. In addition to leaf
segmentation, our model also semantically segments the leaf’s anatomical parts (the blade
and petiole) and can provide shape estimates even in occluded regions. We are eager to ap-
ply similar models in more powerful inference frameworks and to investigate unsupervised
methods for learning multi-region probabilistic shape models.
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