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Abstract 
This paper investigates the performance of different representations of 3D human 

nasal region for expression robust recognition. By performing evaluations on the 
depth and surface normal components of the facial surface, the nasal region is shown 
to be relatively consistent over various expressions, providing motivation for using 
the nasal region as a biometric. A new efficient landmarking algorithm that 
thresholds the local surface normal components is proposed and demonstrated to 
produce an improved recognition performance for nasal curves from both the depth 
and surface normal components. The use of the Shape Index for feature extraction is 
also investigated and shown to produce a good recognition performance. 

1 Introduction 
Recently proposed 3D face recognition systems address the problem of robustly verifying 
or identifying human beings in unsupervised environments, especially for variations 
caused by expression, pose and occlusion, which can destroy the features extracted from 
captures and significantly affect the intra-class similarity and inter-class dissimilarity. 
Although using 3D data can facilitate the correction of pose variations and help address the 
problems caused by occlusions, variations in expressions that lead to muscle movements 
and deform the face surface still present challenges.  

To address this problem many researchers have proposed expression invariant 
recognition algorithms such as morphable models [1], deformation modelling [2], local 
shape difference boosting [3, 4], multi-scale and multi-component local normal patterns [5] 
extended to local binary patterns [6], and sparse representation [7]. A simple and effective 
alternative to algorithms that use local shape descriptors is to match curves on the facial 
surface. Drira et al [8] used a set of radial curves emanating from the nose tip to develop a 
Riemannian framework for analysing shapes of full facial surfaces while Ballihi et al. [9] 
employed both circular and radial curves to represent the whole facial surface. 

Another way to extract expression robust discriminative features is to identify 
relatively stable structures on the face. Li et al. [5] divided the range image of the whole 
face into several patches and obtained the weights of each patch. Similarly, Mian et al. [10] 
explored the recognition performance of different regions of the face and found that both 
the nasal region and forehead are the most robust structures under varying expressions. 
However, the forehead is easily occluded by human hair and so presents more challenges 
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for feature selection than the nasal region, which has been found to be consistent over 
natural expressions and occlusions. Chang et al. [11] matched multiple overlapping regions 
of the 3D nose and its surroundings, obtaining a good recognition performance. Wang et al. 
[4] also explored differently sized nasal regions by changing the radius of a circle centred 
on the nose tip, finding that the performance of the nasal region can match that of the 
whole face while Ballihi et al. [9] found that circular curves around the nasal region 
produce better recognition performance. All these results show the potential for employing 
the nasal region to find discriminative features and its significant contribution to face 
recognition.  

Using the stable nasal region with curves matching strategy, Emambakhsh et al. [12] 
found 75 curves on the nasal region and proposed a new nasal curves matching algorithm 
for 3D nose recognition which produced good recognition performances on the FRGC [13] 
and Bosphorus [14] databases. However, in common with many 3D face recognition 
algorithms, this method focussed on extracting features from the depth information. In 
addition to depth, the surface normal of each point determines the orientation of the surface 
and contains information on local shape variations. Therefore, features from the surface 
normals have significant recognition potential. For example, Zafeiriou et al. obtained the 
surface normal information from photometric stereo images and used it as a normal face 
for face recognition [15]. Li et al. used the surface normals calculated from 3D point cloud 
data, captured using a laser scanner, and demonstrated a good recognition performance [5]. 
Gao et al. investigated some local patches on the nasal and adjoining cheek region which 
demonstrated that descriptors found on the surface normals produce better performance 
than those based on depth [16]. These works provide motivation for the fusion of depth 
and surface normals to exploit more discriminative features for 3D nose identification. 

Inspired by previous work on extracting expression invariant features on the nasal 
region or the whole face, this paper further investigates the discriminative features for 3D 
face recognition. In section 2, an analysis of the motivation of using nasal region as a 
biometrics is provided, which shows that the nasal region has great potential to provide 
discriminative features. For feature extraction, an improved landmark localization 
algorithm is explained in section 3 and curves found on the nasal region are used to build 
the feature set. Different types of 3D representation are also explored to extract features, 
including features extracted from the shape index. The conclusion is given in Section 4. 

2 Analysis of the Motivation of Using Human Nose as 
a Biometrics 
In this section, three different evaluations are proposed to investigate the benefits of the 
nasal region, providing the motivation to extract the discriminative features for 3D nose 
identification. Calculating the intra-class discrepancy over many kinds of expression 
demonstrates that the nose region is relatively rigid and its structure is more stable when 
expression variations occur on the facial surface.  

The other two parts concentrate on evaluating the recognition performance using both 
large and small scale patches on the human face, which also proves that nose region 
outperforms the other parts and suffers from very few nature occlusions. Both the depth 
and surface normal maps are considered in the following three evaluations and results 
presented for all the captures in the Bosphorus database excluding those with occlusions 
and large pose variations. 
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2.1 Intra-class Dissimilarity under Expressions 
In [17], dissimilarity maps were computed for globally registered faces using the point set 
features. The maps were built by subtracting the captures with expressions from neutral 
capture of the same subject. Although these maps provide a good representation of the 
whole face discrepancy distribution and prove that human nose is relative stable under 
expressions, only depth information was considered. Li et al. [5] and Gao et al. [16] used 
three components of surface normal (snx, sny and snz) calculated from 3D point clouds and 
explore the expression invariant discriminative features for recognition, demonstrating the 
potential of surface normals. Therefore, the three components of surface normals are also 
considered here. As a preprocessing step, the pose variations are first corrected and all the 
captures are translated so that they are centred on the nose tip. 

The Bosphorus database [14] provides a good choice for expression invariant features 
extraction. It contains Face Action Units that describe the human face changes when 
expressions occur on different parts of face: lower, upper and combined. It also contains 
the basic human expressions of anger, disgust, fear, happy, sadness and surprise. Captures 
with expression variations are considered in this evaluation and, for illustration, only the 
combined and basic expressions are shown in Figure 1.  

 Combined Anger Disgust Fear Happy Sadness Surprise 

Facial 
Captures 

        

Depth 
        

snx 
        

sny 
        

 snz 
        

Figure 1: Dissimilarity maps calculated from the captures with expressions and neutral one 
using 4 components of 3D data on the Bosphorus database. Darker regions show greater 

dissimilarity on the face. 

All the Face Action Units are used for calculation which results in 32 dissimilarity 
maps of each component (depth, snx, sny and snz), including 2 combined units, 20 lower 
units, 4 upper units and 6 basic expressions. To demonstrate the changes on the face, 2 
combined units and 6 basic expressions are illustrated in Figure 1. As can be seen from the 
maps, some small patches on the face show different variance in each component under 
specific expressions. For example, the cheek bone part is widely regarded as a non-rigid 
region which suffers more changes under expressions [10]. The depth maps shown in 
Figure 1 indicate that the cheek bone region has limited stability. However, the surface 
normals calculated on the cheek are more consistent, which motivates the investigation of 
different types of discriminative features extracted from the non-rigid regions. Compared 



4  
 

 

to other parts on the face, the human nose is the most stable part and also has few natural 
occlusions. 

2.2 Large Scale Patches Evaluation Using Selected Landmarks 
In previous studies, both 2D and 3D facial data are usually divided in to fixed sized 
patches and their recognition performance evaluated, with Local Binary Patterns (LBP) [6] 
being the most popular descriptor to extract features on each patch. For example, in [5] all 
the captures are first resampled to a fixed size and different scales of patches are used for 
recognition performance evaluation. In addition, the three components of the surface 
normals are also used to calculate the dissimilarity maps. 

However, the main problem of these methods is the difference in the content between 
patches from different subjects. The underlying reason for this is that human faces possess 
their own characteristics (e.g. size and curvature) and their structure and distribution is 
different. Although such discrepancies can preserve the intra-class similarity, it can have a 
great influence on inter-class dissimilarity. Therefore, in this section, an improved method 
to correct the discrepancy in content is proposed. In Figure 2(a), from the nose tip eight 
landmarks are automatically detected: (1) the nose tip, nose root and two alar grooves [12]; 
(2) two cheek landmarks [16]; (3) middle nose bridge (middle point between nose root and 
tip) and middle subnasal (symmetrical to middle nose bridge). On the basis of these 
landmarks, 30 patches are found on the whole face region and each patch is resampled to a 
fixed size.  

A set of LBP values is calculated for each patch and the LBP histogram provides the 
feature set. The recognition results are shown in Figure 2, where the brighter regions 
indicate a higher recognition performance. Figure 2(b)-(e) show that, compared to the 
other parts of the face (cheek, mouth and eye), the nasal region is more discriminative and 
has more potential to produce a good recognition performance. 

 
       (a) 30 patches          (b) depth               (c) snx                 (d) sny                 (e) snz 

Figure 2: Landmarks based large scale patches and dissimilarity maps of the whole face 

2.3 Local Patches Evaluation  
In addition to the large scale patches for the whole face evaluation, 56 local patches are 
used to evaluate the discriminatory power on the nasal and surrounding regions. This is an 
extension work proposed by Gao et al. [16], which divided the middle nasal and adjoining 
cheek region into 24 patches. To give a comprehensive analysis of the central part of the 
face another 16 patches including eye and upper nasal region and 16 patches, including the 
subnasal and upper mouth shown in Figure 3(a), are also considered in this evaluation. As 
before, the brighter regions indicate a good recognition performance. 

The features from each patch are extracted by the local shape descriptor proposed in 
[16], which is a more effective at finding local features on smaller patches than the original 
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Local Binary Pattern. As can be seen from Figure 3(b) to (e), patches from the nasal region 
generally perform better than the others on the depth, snx and sny maps, especially for the 
lower nasal part. For the snz map, the nasal region produces a better recognition 
performance than the eye and upper mouth regions but worse than the adjoining cheek 
region. 

     
(a) 56 local patches      (b) depth                (c) snx                   (d) sny                  (e) snz  

Figure 3: The discriminatory power of local patches on and around the nasal region  

3 Landmarks Localization and Feature Extraction 
Landmark localization plays a significant role in region based face recognition algorithms, 
whose accuracy will directly determine the effectiveness of feature extraction. The intra-
class similarity and inter-class dissimilarity may be adversely affected by inconsistent 
landmarks. In addition, for real-time automatic face recognition system, the landmarking 
method should also be efficient. Therefore, the aim of the proposed landmarking method is 
to provide a good compromise of accuracy and efficiency.  

On the basis of the method proposed by Emambakhsh et al. [12], a novel landmarking 
method is proposed by thesholding the three components of surface normals shown in 
Figure 4(b). Table 1 shows that the intra-class consistency and recognition performance are 
improved by the proposed method. For feature extraction, the 75 curves shown in Figure 5 
are found by connecting selected landmarks in the depth, surface normals and shape index 
images.  

3.1 Landmarks Localization Using the Surface Normals 
In Figure 4(a), four main landmarks, the nose tip (L9), root (L1) and two alar grooves (L5 
and L13), are first detected and the remaining landmarks can be found by dividing the lines 
(L1 to L5, L5 to L9, L9 to L13 and L13 to L1) into four equivalent parts [2]. Curvature 
information plays a significant role in 3D face recognition and can be successfully applied 
to face detection, image segmentation and landmark localization. Nearly all the region 
based face recognition algorithms involve curvature. The shape index (SI) can be 
computed from the principal curvatures, kmax and kmin, by 

ܵℎܽ݁	ݔ݁݀݊ܫ	(ܫܵ) = 	 ଶ
గ
	arctan	(ೌೣା

ೌೣି
)                                    (1) 

The nose tip is detected by finding the largest convex region on the face, which can be 
found by thresholding the SI using −1 < SI < −5/8 to produce a binary image [11, 12, 18]. 
The largest connected component is detected and the centroid is saved as the tip. Nose tip 
detection is very straightforward and also more robust as the location is modified in each 
iteration during face alignment.  

The nose root and alar grooves are found according to the location of nose tip. First, 
from the nose tip, a set of planes are defined perpendicular to the xy plane within the 
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vertical direction (-15% to 15%). This produces a set of curves and the nose tip is located 
at the maximum of the curves’ minima. A similar approach is employed to find nasal alar 
grooves. However, this method is not always robust for some scenarios: (1) the shape of 
human nose is diverse and the nasal root is not necessary located at the minimum of each 
curve, which results in failure detection of some subjects, (2) denoising is still challenging 
in 3D face recognition and the algorithm is also sensitive to any residual noise, (3) as it is 
sensitive to the pose variations, accurate pose alignment is required and (4) occlusions by 
glasses. 

One simple and effective way to address these problems is by adding differential 
geometry constraints to optimize the location of the candidate landmarks. As a first order 
surface differential quantity, surface normals demonstrate the orientation of a surface and 
provide an effective way to localise landmarks. For example, the nasal root detection 
proposed in [2] can first be used to estimate the location of the candidate root landmarks, 
C_Root and then the three components of the surface normal can be thresholded using (2). 
The Rootmap shown in the upper part of Figure 4(b), combined with the previous selected 
region, C_Root, produces the final candidate landmarks. A set of (xi, yi) points indicates the 
locations of candidate landmarks and the mean value of xi and yi is calculated to find the 
final nasal root by 

⎩
⎨

⎧
ܵ݊௫(ܵ݊௫ < ௫ܶ) = ;݁ݒ݅ݐ݅ݏ
ܵ݊௬(ܵ݊௬ < ௬ܶ) = ;݁ݒ݅ݐ݅ݏ
ܵ݊௭(ܵ݊௭ > ௭ܶ) = ;݁ݒ݅ݐ݅ݏ

ݐܴ = ܵ݊௫ ∩ ܵ݊௬ ∩ ܵ݊௭ ∩ ݐܴ_ܥ

                                    (2) 

Compared to the improvement of nasal root detection, without any prediction only the 
surface normals are used to localize the nasal alar grooves. The original approximate 
structure shown in the lower part of Figure 4(b) is obtained by thresholding the x and z 
components using (3). As the approximation is not connected for some captures, mainly 
due to residual noise in the data, a morphological closing is then applied. Using the nose 
tip, the final alar grooves are located at the left and right extrema in horizontal. All the 
surface normals are normalized before thresholding and the thresholds can be tuned. In this 
experiment tested on the Bosphorus database, Tx, Ty and Tz of nasal root are set to 0.10, 
0.10 and 0.99. Tx and Tz of alar grooves are 0.70 and 0.45. 

ቐ
ܵ݊௫(ܵ݊௫ > ௫ܶ) = ;݁ݒ݅ݐ݅ݏ
ܵ݊௭(ܵ݊௭ < ௭ܶ) = ;݁ݒ݅ݐ݅ݏ

	ݏ݁ݒݎ݃	ݎ݈ܽܣ = ܵ݊௫ ∩ ܵ݊௭
                                          (3) 

Although the Bosphorus database provides some manually detected landmarks, finding 
the ground truth for these four landmarks is still very challenging. The effectiveness of 
these newly detected landmarks can be evaluated by the recognition performance, which 
will be discussed in the next section. However, the intra-class consistency can be verified 
by calculating the Euclidean distance between each landmark for captures from the same 
subject. All the captures are translated to the nose tip and the mean and standard deviation 
(std) of the distance (in mm) of all the subjects are illustrated in Table 1. The proposed 
landmarking method demonstrates high intra-class consistency in comparison with [12]. 
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                                  (a) 16 nasal landmarks      (b) Binary map of selected region 

Figure 4: 16 landmarks located on the nasal region and surface normals thesholding 

 Emambakhsh et al. [12] Proposed 
Mean Std Mean Std 

Root (L1) 3.7221 2.3967 3.3789 2.3500 
Alar_L (L5) 2.0644 1.5028 1.9935 1.5077 

Alar_R (L13) 2.0619 1.5328 1.9873 1.5357 
Table 1: Intra-class landmarks consistency evaluation. 

3.2 Nasal Curves Using Depth, Surface Normals and Shape Index 
In [12], each curve was resampled to 50 points and 28 out of the 75 curves were selected, 
resulting in a feature set of 28×50 points from the nasal region. Gao et al. [18] used only 
15 points per curve instead of 50 points and proved that fewer points on the nasal and 
cheek region can also produce an acceptable recognition performance, even with the 
dimensionality of the feature space greatly reduced. Therefore, 75 nasal curves with 15 
points per curve are investigated to extract discriminative features in this paper. To reduce 
the dimensionality and find the most discriminative curves or curves combination, forward 
sequential feature selection (FSFS) was applied to the 75 curves, combined with the leave-
one-out correlation validation and nearest neighbour classifier.  

The rank one recognition rates (R1RR) obtained from different components of the 3D 
face as the size of the feature set increases, as determined by the number of curves selected, 
are shown in Figure 6. To evaluate the recognition performance of the landmarking, 
comparisons with the method proposed in [12] (in black), new root only (in blue), new alar 
grooves only (in green) and both new root and alar grooves (in red) are also shown. 
Specifically, for all the components (D, X, Y and Z), the recognition performance is 
improved with the new landmarking algorithms by ~5% (>5% for D and X, <5% for Y and 
Z). Although the intra-class consistency of the new nasal tip improves more than alar 
grooves, the mean and std are still larger, resulting in a lower R1RR for the nasal root. 

 
                  (a) Depth             (b) X             (c) Y               (d) Z        (e) Shape Index 

Figure 5: 75 nasal curves representations on five types of data  
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Figure 6: Recognition results by different landmarks on the Bosphorus database. 

3.3 Using the Shape Index for Nose Recognition 
The 2D representation of the curvature of 3D surface provided by the SI is a popular 
method to characterize the surface patches and many nose, ear and face recognition related 
algorithms successfully employ it for fiducial feature detection. The SI describes regions of 
a surface ranging from spherical cup (-1) to spherical cap (+1) with saddle at 0. A useful 
property of the SI representation is that curvature is pose invariant.  

Although some biometric researchers have used the SI as a new type of discriminative 
features, it is a seemingly an under explored representation [19]. Huang et al. [20] used a 
multi-scale local binary pattern depth map together with the SI map to increase the 
distinctiveness of smooth range faces. Vijayan et al. [21] also explored the usage of SI map 
for twins 3D face recognition. In [22], a comparison of a series of 3D facial features 
showed that the SI outperformed PCA and LDA for depth maps while performing worse 
than the point cloud or surface normal representations.  

However, using the SI alone may produce some unexpected problems. The SI 
coefficients calculated on the planar region are relatively noisy as the curvature of such 
region is low. Therefore, the SI is not an appropriate representation for describing the 
whole face region, especially for cheeks. To avoid this drawback, one efficient way is to 
only SI extract features on less flat regions, for example the nasal region.  

Some effective denoising algorithms can be used to smooth the original SI data, for 
example median filter which is also widely applied in image denoising and depth data 
smoothing. In addition, curvedness, a positive number that specifies the amount of 
curvature, proposed by [23], provides a solution to this problem. Therefore, this section 
focuses on extracting discriminative SI features on the nasal region and evaluating the 
importance of denoising of the SI calculated from different types of data.  
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Figure 7(a) and (b) demonstrate the original SI data from the Bosphorus database 
calculated by (3). Noisy information can be found in both the frontal and side view, which 
may cause problems for region segmentation and feature extraction. A recent summary and 
evaluation of different denoising methods applied to 3D face recognition suggests that the 
median filter is a good choice for denoising [24]. Therefore, the median filter is applied to 
the original SI data, resulting in the smoothed data representation shown in Figure 7(c) and 
(d).  

The set of nasal curves used in the previous section are also extracted from the original 
and denoised SI data, Figure 5(e), and the corresponding recognition performance is shown 
in Figure 7 (blue curves). The R1RR is much higher when the median filter is applied and, 
in particular, the performance of the curve from the nasal tip to root increases by ~17% 
after denoising. 

 
          (a) Original SI                (b) Frontal view              (c) Denoised SI   (d) Frontal view (denoised) 

Figure 7: Shape Index Denoising on the Bosphorus database 
To compare the performance using different types of data, a subset of the FRGC v.2 

and Photoface databases [25] are used. In Figure 8, the recognition performance for the 
Photoface database, shown by black curves, outperforms the Bosphorus (blue) and FRGC 
v.2 (red) databases. For the combination of curves, there is 5-10% R1RR improvement for 
FRGC and Bosphorus. In contrast, there is no significant increase in the R1RR for the 
curves combination when denoising is applied to the Photoface database, probably because 
the reconstructed captures of Photoface are relatively smooth and so denoising is of limited 
benefit.  

 
Figure 8: The shape index denoising results tested on three databases.  

4 Conclusions  
In this paper, an investigation of the recognition performance using different 
representations of 3D nasal region under various expressions is provided. An analysis of 
the variation of the nasal region over different expression is used to demonstrate that the 
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human nose is relatively rigid under expressions and has more potential to extract 
discriminative features. For feature extraction, there are three main contributions: First, the 
accuracy of nasal landmarks is improved by thresholding surface normal components. 
Both the intra-class consistency and recognition performance of the proposed landmarking 
method are improved. Second, features are extracted from the depth and surface normal 
components which demonstrates the potential of different 3D representations for providing 
discriminative features. Finally, using the smoothed SI, after median filtering, is shown to 
significantly improve the recognition performance. 

References 
[1] B. Amberg, R. Knothe, and T. Vetter. Expression invariant 3D face recognition 

with a Morphable Model. in Proc. 8th IEEE International Conference on 
Automatic Face & Gesture Recognition, 2008. 

[2] L. Xiaoguang and A. K. Jain. Deformation Modeling for Robust 3D Face 
Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
30(8): 1346-1357, 2008. 

[3] W. Yueming, L. Jianzhuang, and T. Xiaoou. Robust 3D Face Recognition by 
Local Shape Difference Boosting. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 32(10):1858-1870, 2010. 

[4] W. Yueming, T. Xiaoou, L. Jianzhuang, P. Gang, and X. Rong. 3D Face 
Recognition by Local Shape Difference Boosting. in Proc. the European 
Conference on Computer Vision, 2008. 

[5] H. Li, D. Huang, J.-M. Morvan, L. Chen, and Y. Wang. Expression-robust 3D 
face recognition via weighted sparse representation of multi-scale and multi-
component local normal patterns. Neurocomputing, 133(0): 179-193, 2014. 

[6] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation 
invariant texture classification with local binary patterns. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 24(7): 971-987, 2002. 

[7] L. Xiaoxing, J. Tao, and Z. Hao. Expression-insensitive 3D face recognition using 
sparse representation. in Proc. IEEE Conference on Computer Vision and Pattern 
Recognition, 2575-2582, 2009. 

[8] H. Drira, B. Ben Amor, A. Srivastava, M. Daoudi, and R. Slama. 3D Face 
Recognition Under Expressions, Occlusions and Pose Variations. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 35(9): 2270 - 2283, 
2013. 

[9] L. Ballihi, B. Ben Amor, M. Daoudi, A. Srivastava, and D. Aboutajdine. Boosting 
3-D-Geometric Features for Efficient Face Recognition and Gender Classification. 
IEEE Transactions on Information Forensics and Security, 7(6): 1766-1779, 2012. 

[10] A. S. Mian, M. Bennamoun, and R. Owens. An Efficient Multimodal 2D-3D 
Hybrid Approach to Automatic Face Recognition. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 29(11): 1927-1943, 2007. 

[11] K. I. Chang, W. Bowyer, and P. J. Flynn. Multiple Nose Region Matching for 3D 
Face Recognition under Varying Facial Expression. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 28(10): 1695-1700, 2006. 

[12] M. Emambakhsh, A. Evans, and M. Smith. Using nasal curves matching for 
expression robust 3D nose recognition. in Proc. Biometrics: Theory, Applications 
and Systems, 2013. 



 11 
 

[13] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, et al.. 
Overview of the face recognition grand challenge. in Proc. IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition, 947-954, 2005. 

[14] A. Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. Sankur, et al.. 
Bosphorus Database for 3D Face Analysis. in Proc. Biometrics and Identity 
Management, 47-56, 2008. 

[15] S. Zafeiriou, G. A. Atkinson, M. F. Hansen, W. A. P. Smith, V. Argyriou, M. 
Petrou, et al.. Face Recognition and Verification using Photometric Stereo: The 
Photoface Database and a Comprehensive Evaluation. IEEE Transactions on 
Information Forensics and Security, 8(1): 121-135, 2012. 

[16] J. Gao and A. N. Evans. Expression robust 3D face recognition by matching 
multi-component local shape descriptors on the nasal and adjoining cheek regions. 
in Proc. IEEE International Conference on Automatic Face and Gesture 
Recogntion, 2015. 

[17] N. Alyuz, B. Gokberk, H. Dibeklioglu, and L. Akarun. Component-based 
registration with curvature descriptors for expression insensitive 3d face 
recognition. in Proc. IEEE International Conference on Automatic Face & 
Gesture Recognition, 2008. 

[18] J. Gao, M. Emambakhsh, and A. N. Evans. A Low Dimensionality Expression 
Robust Rejector for 3D Face Recognition. in Proc. International Conference on 
Pattern Recognition, 506-511, 2014. 

[19] M. Hansen. 3D face recognition using photometric stereo. PhD, Faculty of the 
Environment and Technology, University of the West of England, 2012. 

[20] H. Di, Z. Guangpeng, M. Ardabilian, W. Yunhong, and C. Liming. 3D Face 
recognition using distinctiveness enhanced facial representations and local feature 
hybrid matching. in Proc. IEEE International Conference on Biometrics: Theory 
Applications and Systems, 2010. 

[21] V. Vijayan, K. W. Bowyer, P. J. Flynn, D. Huang, L. Chen, M. Hansen, et al.. 
Twins 3D face recognition challenge. in Proc. International Joint Conference on 
Biometrics, 2011. 

[22] B. Gökberk, M. O. İrfanoğlu, and L. Akarun. 3D shape-based face representation 
and feature extraction for face recognition. Image and Vision Computing, 24: 857-
869, 2006. 

[23] J. J. Koenderink and A. J. van Doorn. Surface shape and curvature scales. Image 
and Vision Computing, 10(8): 557-564, 1992. 

[24] M. Emambakhsh, J. Gao, and A. Evans. An Evaluation of Denoising Algorithms 
for 3D Face Recognition. in Proc. International Conference on Imaging for 
Crime Detection and Prevention, 2015. 

[25] S. Zafeiriou, M. Hansen, G. Atkinson, V. Argyriou, M. Petrou, M. Smith, et al.. 
The Photoface database. in Proc. IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition Workshops, 132-139, 2011. 

 


