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Abstract

The use of pose estimation for human action recognition has seen a resurgence in
previous years, due in part to the natural representation of the activity as a sequence
of key poses and gestures. The use of sequence alignment techniques has aided the
process of comparing between sequences of differing temporal rates, with aligned cluster
analysis segmenting an observation into lower level action primitives. We suggest that the
representation of a given action class via its lower level gestures can help to identify the
higher-level action class label. We therefore present a method for the generation of key
poses via the initial segmentation of an action class into gestures that are similar across
numerous observations. We treat all training observations as a single observation in
which there are repetitions of the same action class. By applying segmentation, we then
identify common gestures across the class, which are used to generate the key poses we
optimize via evolutionary programming. Global recognition rates of 97.4% are achieved
using a subset of the MSR Action3D dataset. We then expand the method to recognize
interaction events between two individuals using the SBU Kinect Interaction dataset,
achieving recognition rates of 83.9% and over 96.4% when observing the first 6 classes.

1 Introduction

Human Action Recognition (HAR) is a field concerned with the detection and identification
of different human behavior classes observed within a scene. As such, it is a topic that
provides benefit to numerous problem domains; including surveillance, human-computer
interaction and medical diagnostics [1]. Events are often categorized based on complexity
in gesture, action, interaction, or group activity, yet an activity can potentially be a mixture
of lower-level gesture types, e.g., ‘walk’ contains gestures including ‘lift leg’, ‘swing leg
forward’, and ‘lower leg’ [21]. Current appearance and pose-based methods have lead to
the accurate recognition of simplistic actions and gestures, such as ‘waving’, ‘running’, and
‘jumping’ [4, 9, 27]. There has been recent renewed interest in the use of pose-based HAR,
partly due to the availability of commercial depth sensor systems which are able to track
body joint locations with reasonable accuracy [16, 27].
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There are several key issues to consider in HAR analysis. Often individuals may perform
the same actions with both the intra- and inter-subject level variation in their spatial or tem-
poral execution [24]. Therefore it is necessary to develop methodologies that are able to deal
with the impact of spatio-temporal variation on an intra- and inter-subject level, whilst main-
taining partitioning information at the inter-class level. Recent approaches have made use
of sequence alignment to allow temporal comparison between actions, key pose representa-
tion to study the underlying gesture composition of an action, and segmentation to identify
gestures within a sequence [11, 30].

Previous study on the use of pose estimation has promoted the use of a Bag of Key
Poses (BoKP) model, in which representative key spatial poses form a bag of words, which
can be compounded to describe higher-level actions [3, 9, 11, 13, 20]. To achieve this, k
key poses are generated by clustering similar frames from a whole sequence. Transforming
a sequence into a key pose representation reduces the impact minor frame-to-frame spatial
variations, provided that sensible key poses are generated [30], as representative poses are
produced for each class and stored within one bag [3, 9, 13, 20].

To align actions that are linear sequence of poses, which may vary in temporal execution,
sequence alignment techniques such as Dynamic Time Warping (DTW) [18, 23], Dynamic
Manifold Warping (DMW) [14, 15], and Canonical Time Warping (CTW) [29], have been
employed to reduce the impact of temporal variations, [5, 6, 10, 22]. These methods have
however been criticized in situations where the temporal execution rate may provide some
key information between two classes, e.g. ‘run’ and ‘walk’ [7], or there are repeated cyclic
gestures within the action [25]. In some cases, an action can be defined by its accumulated
composition of primitive poses, forming a bag of words representation [11]. In both of
these situations we believe it is beneficial to first segment the observation to identify any
repeated primitive gestures. This will identify cyclical or compound gestures that form a
higher level action. To segment an observation, [30, 31] utilize DTW to group varying length
segments into k clusters by dynamic programming via Aligned Cluster Analysis (ACA) and
Hierarchical Aligned Cluster Analysis (HACA).

Finding an optimal set of classification parameters is non-trivial, and optimization re-
quires the selection of informative training samples and features to reduce the impact of
outliers in the action space. Evolutionary programming methods have provided optimum
selection of training instances [6], and also informative features for a given observed action
class [8]. This online learning has an attractive application for HAR, learning new action
classes without having to retrain a classifier in an offline fashion.

To efficiently recognize interactions between two people, whilst providing a method of
key pose generation that reflects the composition of higher level actions in terms of their
shared gesture dictionary, we present a means of using sequence alignment to obtain sub-
action gesture segmentation across all training observations. The ability of ACA to cluster
similar segments of frames from a sequence, combined with the benefit of recognizing re-
peated sub-action segments via temporally flexible DTW, presents a method of segmenting
similar sub-actions between multiple observations of an action class. These segmented ges-
tures are then represented as key poses in an evolving bag representation, thus identifying
key poses of a local temporal region which is repeated across training instances. By mov-
ing towards the recognition of more complex scenarios we hope to eventually lead towards
recognition of higher-level, complex interactions between individuals; such as the context
specific interactions discussed by [11, 12].

The rest of the paper is organized as follows: In Section 2 we describe our method of
using ACA to identify cross-subject gestures before extracting key poses for each gesture
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cluster, and the evaluation techniques undertaken. In Sections 3 and 4 we draw conclusions
on the predictive abilities of the proposed method, evaluating performance with two publicly
available datasets.

2 Methods

We propose the use of sequence alignment and segmentation methodology to identify cross-
subject gestures to generate a key pose representation for action and interaction recognition.
By identifying descriptive poses within each gesture we are able to more accurately represent
sub-action primitives which compound to form a given gesture. We propose that understand-
ing these gestures may in turn benefit the learning of higher level actions. We utilize ACA
to generate segments for a given action, using these gesture clusters to identify key poses.
The key pose space allows reduction of spatial variation within the observations, providing
more accurate sequence alignments. The sequences of key poses are then used to generate
a nearest neighbour classifier for predicting labels of newly observed sequences. In order to
identify suitable pose generation parameters we utilize evolutionary programming to select
informative training observations and features from the input data.

2.1 Segmentation of Gestures

The observation of an action is often the compounding of numerous poses into a sub-action
gesture, with multiple gestures then forming the given class. Therefore a set of observed
sequences for an action, X ,, where A is all possible actions, often contains a set of sub-action
gestures which best describe X,. These gestures are a temporally ordered sequence of key
poses, the frame-by-frame pose of the human body. With the intention to recognize similar
primitive gestures across all observations of X,, we represent all training instances of the
given action a as a single continuous sequence. Unlike previous methods, which use k-means
as a method of determining the k key poses, we make use of the ACA methodology presented
by [30, 31] to first cluster similar action primitives into kK’ gesture clusters common across all
training instances of a given action. A minimum and maximum segment length is selected
and all possible segment sizes within that range are iteratively clustered using a dynamic
time alignment kernel. Using DTW, possible segments are aligned to current members of
each cluster and allocated to the most similar cluster, with each iteration minimizing within-
cluster variance, segmenting out similar repeated gestures across subjects. Once we obtain
the ACA segmentation, we find the k cluster centroid poses by k-means clustering over each
frame of a gesture cluster.

Usual key pose generation draws representative poses from all frames of observed se-
quences, which may cause motion with a gesture to be lost in key pose representation. In
comparison, by identifying key poses within sub-action gestures we are formulating a key
pose representation that reflects the gestures that in turn compound to form an action. This
produces key poses from gestures that are observable across numerous subjects, providing
informative poses that compose each gesture.

2.2 Sequence Alignment and Prediction

The identified gesture poses are used to generate a DTW nearest neighbour classifier to pro-
vide label predictions for new observations of a given action class. For each of the training
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samples we produce a key pose representation, reducing noisy spatial variation present be-
tween frames, by picking the nearest pose to the current frame. This is repeated for each of
the testing samples. Using DTW as a nearest neighbour distance metric we are able to reduce
the effects of slight temporal fluctuation in execution rates common in HAR. A test sample
is predicted to share the label of the training sample with the shortest warping distance.

2.3 Parameter Optimization

To optimize our gesture-based key poses we expand upon the evolutionary programming
explored in [6], allowing parameters for our models to be identified over each generation. We
first construct a population Py., containing n individuals, with each individual represented
via a genomic sequence, p; = [g1, ..., g]; where each gene vector, g;, represents a parameter
of the model. The training instance vector, ij., € {0, 1} for n training samples, is a binary
indicator of whether a given sample in the training set is used to generate the key poses. The
vector is updated by random initialization as training instances are added to the system. This
vector aims to optimize the selection of informative training samples. The parameter vector,
P1a € {N{1,...,K}}, where K is an upper limit constraint on the possible number of key
poses with which to populate the bag. Smaller k results in coarser approximation of action
class a. Should the system learn a new action, then A is increased by 1 and representative key
poses are learnt for the new class. The feature selection vector, f1.;.,, € {0, 1} for m possible
joints and s subjects, is a binary indicator denoting if a given feature is used to generate key
poses. By treating the individual subjects in a scene separately, we are able to optimize which
joints are informative to the overall class; this is beneficial when an interaction class has the
same label, but the two subjects react differently across instances. In each generation all
individuals are ranked on poses they produce, maximizing the correct predicted class labels
obtained by sequence alignment classification outlined in Section 2.2.

Standard Evolutionary Algorithm (EA) operators are used for reproduction, recombina-
tion, mutation, and ranking of the population within each generation. Recombination for
i and p occurs as outlined within common practice of EA, via single point swapping [2].
Recombination of f occurs via a domain specific crossover method, in which a joint and its
dependent branch is substituted with the second parent. Recombination helps to defer con-
vergence onto a homogeneous population by introducing variation of genes between parents
and offspring. Once a new offspring is generated, mutation provides variation within the
population gene-pool, attempting to avoid optimizing towards a local minimum by widening
the search space. Each gene within vectors 1., and fj.sx,, are subject to a binary flip based
on their respective mutation rates; whilst genes in vector p are either sampled from a random
distribution over all possible values, or from a Gaussian distribution over a localized range,
each with equal chance. For observations of human interaction we must modify the operators
to handle two individuals, thus the recombination operator has a domain specific crossover
method that accounts for the semantics that describe each of the two observed individuals.

2.4 Implementation and Evaluation

The method presented requires a number of initialization parameters to be selected before
they are optimized using evolutionary programming. For all experiments, the mutation prob-
ability was dynamically selected via a random distribution from between 0.0 and 0.1 for
instance vector i, and between 0.0 and 0.2 for vectors f and p. In our study, the Gaussian
standard deviation for mutation of genes within parameter vector p was empirically set to
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Table 1: Action class sets used for evaluation, with generation in which they are introduced
to the population. The first two actions are introduced simultaneously for initialization.

Generation AS2 [19] SBU [28]
0 High arm wave | Approaching
0 Hand catch Departing
50 Draw x Pushing
100 Draw tick Kicking
150 Draw circle Punching
200 Two hand wave | Exchanging
250 Forward kick Hugging
300 Side boxing Handshake

o = 4, producing a small localized mutation search space when using Gaussian gene mu-
tation. For our evolutionary optimization, for comparability to [6], we selected an initial
population size of n = 10, with 10 offspring created at each generation. For initial seeding
of the population, genome vectors are randomly initialized. In both single action and inter-
action experiments we limited the number of generations per action to 50, increasing this to
100 made little difference in the overall accuracy of the populations; however evolutionary
optimization can be repeated indefinitely to allow for the time restriction to be relaxed on the
optimization. For k-means clustering, we limited the maximum value of k to 40 key poses;
as it appeared to provide both a decrease in complexity, and marginal increase in accuracy on
the 75 poses used by [6]. This is only an upper limit on the number of key poses generated,
and increase in accuracy observed may be an artefact from initialization, however we noticed
no noticeable hindrance to the system.

2.4.1 Single Action

For single person HAR, the proposed method was evaluated on the 20 tracked joints of the
MSR Action3D dataset [19]. This dataset is a commonly used standard for single person
HAR methods, and is comprised of 3 subsets containing various action classes; containing
20 action classes performed by 10 subjects, repeated up to 3 times. We evaluate our method
on the AS2 subset, which is viewed as the most complex of the 3; utilizing the train/test split
outlined by [19], producing a leave-one-actor-out cross-subject validation analysis. The AS2
set contains the 8 action classes listed in Table 1. Joint coordinates are utilized as features,
with each gene of the feature vector f representing a joint marker, fj.00. This subset was
also used to evaluate the methods in [6], which we have also implemented here for cross-
comparison. For ACA sequence segmentation on the MSR dataset, we empirically initialized
the segmentation method to group the total-instance sequence into k' = 5 sub-action gesture
clusters, with a segment length limitation of between nMin = 1 and nMax = 10 frames.

2.4.2 Two Person Interactions

To evaluate the method for the purpose of interaction recognition we utilize the SBU Kinect
Interaction dataset [28]; a dataset consisting of 8 interaction classes, Table 1. 21 pairs of
subjects performed actions up to 3 times, and 15 joints were tracked via Kinect. Following
the 5-fold cross validation split outlined in [28], with 4-5 interaction pairs per fold. Joint
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Table 2: Global recognition rate (%) across all action classes at final generation of evolu-
tionary optimization.

Dataset [6] | k-means | Proposed gesture key poses
MSR Action3D 88.6 96.3 97.4
SBU Kinect Interaction - 83.3 83.9

coordinates features are utilized, with the pairwise interaction encoded as a 30 dimensional
temporal sequence, fi.;5 representing person A and fj4.39 person B. To indicate this in pop-
ulation genetics, the recombination of a given feature vector fj.39 occurred via a modified
domain specific method; if the cross point fell between f}.;5, any dependent joints along the
branch would be taken from the person A on the second parent, while cross points falling
on genes in the range fi.;5 were selected from person B. By this method we have chosen
to maintain domain specific recombination whilst applying it to handle the two individuals
observed in the scene. To obtain ACA segmentation of the SBU dataset, we initialized the
segmentation cluster value K’ = 5 sub-action clusters, with gesture length between nMin = 1
and nMax = 4 frames as there are a lot of cyclic motions within the SBU class which have
very short repetition rates.

3 Results

We present the findings of our proposed method within Table 2 and Figures 1 and 3, utilizing
ACA segmentation to generate the key poses used in recognizing observed action input se-
quences. The results shown are the averaging of cross-fold validation as detailed in Section
2, over 3 replicate runs.

3.1 Single Person Action

The proposed method of obtaining key poses from segmented gestures achieved a global
accuracy that improves upon the comparable k-means method outlined by [6]. The prior
segmentation of class training samples is able to extract informative gestures from the action
class, with subsequent clustering of within-gesture poses identifying poses that are able to
more comprehensively describe the action classes observed. As expected, introduction of a
new action class does have negative effect on recognition rates of the currently optimized
population. This initially results in decreased accuracy due to random initialisation of the
genetic representation of the new action class. However, evolutionary optimization returns
the population to an acceptable level, as seen by the increase in accuracy in following gener-
ations, Figure 1.

Prior clustering of the action class into cross-subject gestures works well to produce key
poses for sequence alignment based classification. The evolutionary method compliments
this by adapting to the introduction of new action classes, optimizing towards the most in-
formative set of parameters for the model. The MSR Action3D dataset is a common dataset
within the pose estimation community, and recognition rates of 97.4% on perceivably its
most complex subset are an indicator of the benefit to using gesture segmentation in the
identification of key poses. From Figure 2 we can see that common error lies in partitioning
between the classes ‘high arm wave’ and ‘side boxing’, where each individual in the popu-
lation was unable to classify one of the testing samples. There was also a smaller level of
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Figure 1: L-R: Maximum and Average predictive accuracy of population when classifying
single person actions on the MSR AS2 dataset. A new class is introduced every 50 genera-
tions.

confusion in predicting between ‘hand catch’ and ‘side boxing’ classes. Surprisingly there
was little confusion in the recognition of the classes ‘draw x’, ‘draw tick’ and ‘draw circle’,
those which we would presume to contain the most subtle action gestures. The large fall
in classifier accuracy at generation 50 is coupled with the introduction of the ‘draw x’ class,
with the subsequent ‘draw ...~ classes providing a similar fall in population accuracy at gen-
erations 100 and 150. This is reasonably acceptable due to the complexity of the classes, and
the small number of frames that their gestures are comprised of; however, within a few gen-
erations the population has optimized the parameters and returned previous accuracy levels.
In the case of introducing ‘two hand wave’ and ‘forward kick’ there is an increase in popula-
tion accuracy upon learning the new classes, this suggests that the training samples have then
provided some benefit to partitioning the previously learnt actions, boosting the recognition
of these classes.

3.2 Two Person Interaction Recognition

Similar improvement over the use of standard key pose generation can be seen from the in-
teraction recognition evaluation. Figure 3 shows that for the majority of the action classes
observed the predictive accuracy is in excess of 95% when the bag of key poses has been
generated using ACA. In both methods used, the recognition rate between the ‘approaching’
and ‘departing’ classes reached 100% within a small number of generations, if not immedi-
ately; this is believed to be due to the simple, almost polar opposite sequence of poses that are
generated during the creation of the bag. Despite this issue being discussed in [17, 21, 28],
we decided to keep these classes as part of recognition testing due to the need for adapta-
tion with later introductions of unobserved classes. During the adaptation to new interaction
classes, we observe a decrease in recognition accuracy as expected; however the drop in
accuracy is not as noticeable as with the single action recognition. This may be due to the
more simplistic classes provided by the SBU dataset, or due to the higher dimensional em-
bedding of features. There was some difficulty for both methods to return to their previous
level of accuracy once a new action class was introduced; although a small increase occurs
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High arm wave 0.00 0.00 6.67

Hand catch

0.00 0.00 6.00

Draw X

Draw Tick 0.00 0.00 0.00

Truth Class

Draw circle 99.33

Two hand wave | 0.00 0.00 0.00 0.00 100.00 0.00

Forward kick | 0.00 0.00 0.00 0.00 0.00 10000

Side boxing

=
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High arm wave
Hand catch
Draw X
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Draw circle
Two hand wave
Forward kick
Side boxing

Predicted Class

Figure 2: Confusion matrix of single person action class recognition. Values shown are
predictive rates for the final generation of optimisation.

within the allotted 50 generation time frame, the final prediction accuracy does not reach the
standard it achieved before the introduction of the new class, as can be observed with the
MSR action recognition. This could be due to the rate of mutation or the generation length
being cut short. Despite this drop in accuracy we are still able to generate strong recognition
accuracy on multiple complex pairwise interactions by first segmenting the action class into
lower level gestures.

4 Conclusion

This study has shown that key pose generation benefits from the initial segmentation of
lower-level gestures from all observed training instances. This identifies key temporal sub-
actions across instances of an action class, before then using these segments for the genera-
tion of the key poses. The use of aligned cluster analysis has allowed us to extract common
gesture sequences from across all training observations by sequence alignment with Dynamic
Time Warping. This segmentation has then in turn been utilized to create a bag of key poses
that is able to accurately recognize action classes on both a single person, and two person in-
teraction level. Although this method generates significantly more key poses for the bag, it is
these informative poses that are able to assist in classifying new observations in the scene by
describing gestures that are repeatedly observed across numerous instances. The use of ACA
segmentation to generate key pose representations has benefits in the recognition of pairwise
interactions between two individuals, providing an increase in the correct prediction through
use of key poses. Although the initial accuracy of the classifier is variable, the evolutionary
optimization of the tuning parameters is able to increase the predictive accuracy over time.
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Figure 3: L-R: Maximum and Average predictive accuracy of population when classifying
two person pairwise interactions. A new class is introduced every 50 generations.

The understanding of the underlying gestures are key to recognizing actions, as has been
demonstrated by the use of key poses, sequences of key poses, bag of key pose, and sequence
alignment techniques that have come to fruition over recent years. Further understanding of
how an action execution can be comprised of gestures that are global across both subjects and
observations will help to identify which portions of an event are beneficial to the partitioning
of the action space.

In terms of performance; the number of key poses that this method creates is large, cre-
ating k key poses for each of the segmented gesture clusters. Therefore a reduction in the
number of key poses that represent each segment cluster may be beneficial to the overall
accuracy and speed of the system. Just as with the selection of training parameters, the use
of evolutionary programming may guide the selection of an optimum ACA segmentation.
The observed accuracies are acceptable for the HAR domain, and especially when consid-
ering the recognition of interactions between two individuals, in which level of variation in
execution can vary on a large scale and the class labelling is broadly generalized.

In coming studies we intend to expand the complexity of the interaction problem further;
incorporating the use of action classes that consist of multiple low level gestures accumulated
over a period of time, such as conversational interactions. We will also look into the non-
sequential key pose representations, improving predictive accuracy for classes in which there
is little constraint on the linear ordering of poses.
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