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In the following we present more experiments and other results which did not fit into the
paper. The results of section 3 were generated with the identical implementation. However,
please note that the results of section 1 and 2 were obtained previously with slightly different
parameters, but the claims made are still valid and representative.

1 Parameter Analysis

The walk length N and the parameter o¢ of the random walk transition probability are the
most relevant ones for the performance of our method. In Fig. 1, we present exemplary
results for varying values of N and o¢ using the datasets Tsukuba and Cones. We chose
these two datasets because we measured the biggest differences for them.
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Figure 1: The charts display the influence of the parameters N and o¢ on the errors in non-
occluded (nocc) and occluded (occl) areas. Errors are defined as percentages of disparities
that differ by more than 1 from the ground truth and we used a logarithmic scale of the
vertical axis for a better visualization. To generate these charts, we did not use the random
walk based propagation. For the first chart we fixed 6¢ = 15 and for the second chart N =
200.
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Figure 2: The charts display the effect of disabling processing steps of our cost function.
Error bars show percentages of disparities that differ by more than 1 from the ground truth
in the whole image (all), non-occluded pixels (non-occl) and regions near discontinuities
(disc).

Small values of N introduce errors because aggregated matching costs are less discrim-
inative in this case and thus, many wrong minimum values receive votes. Larger values of
N have a positive effect on the performance in occluded regions, which can be explained by
the voting strategy. If a walk covers occluded pixels and if the correct disparity is selected
for voting then these occluded pixels will receive support for the correct disparity. At the
same time, the errors increase in non-occluded regions because it becomes more likely that a
random walk steps over discontinuities. The steeper increase at Tsukuba might be explained
by the simple geometric structure of Tsukuba (there are less discontinuities than in Teddy).

Very small values of ¢ lead to high errors in non-occluded regions because the walks are
then very sensitive to image noise. Especially at Tsukuba, there are some vertical artifacts
present in the images, presumably a result from a Bayer-pattern, which seem to lead to higher
errors for small values of N and o¢. Larger values of o¢ gradually increase the error because
it is more likely that walks cross object boundaries. In practice, good values for o¢ and
N, which minimize errors in non-occluded regions, can be obtained relatively efficiently in
an iterative manner. With a dense discrete parameter exploration we found that the trends
described above are still valid for other parameter combinations.

2 Analysis of the Different Method Steps

Please note that in this experiment a different global energy minimization technique based on
belief propagation was used. Since a very weak smoothness constraint was used, practically
no influence on the results can be observed and thus, the global optimization can be ignored
here.

In Fig. 2, we analyze the influence of the different processing steps of our cost function
on the quality in different image regions. The red bars (a) show the performance of the full
method with all processing steps.

The blue-colored bars (b-d) show the impact of the simulation in left and right images and
of the propagation. The left-right simulation helps in most parts of the image because some
false matches in regions near discontinuities are avoided. Due to the voting, both occluded
and non-occluded regions benefit from that. The propagation clearly improves the occluded
regions by comparing (a) and (d), but may also slightly degrade non-occluded areas because
occasionally false matches are diffused into the neighborhood.

The green-colored bars (e-f) show the influence of the a priori surface orientations. For
(e) we used only a fronto-parallel prior A; = {(0,0)7}, for (a) 4 orientations Ay = Aj U
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{(0,1)7,(£3,0)"}, and for (f) 8 orientations Ag = Ay U {(£3,0)7,(£32,0)7}. It is clearly
visible that the addition of only a few orientations using A4 results in a huge improvement
in performance on these datasets. The negative side-effects of adding more orientations
using Ag is surprisingly low, since we would have expected a larger degradation due to a
higher matching ambiguity. However, there is nearly no improvement of using 8 orientations
at these datasets, mainly because the disparity gradients on surfaces are relative small at
these datasets and thus, less orientations suffice. At the dataset Flowerpots of Fig. 3 larger
gradients occur and in non-occluded regions we measured an error of 7.8%, 6.5% and 4.8%
for 1, 4 and 8 orientations respectively. These experiments also provide some evidence for
our assumption that random walks usually cover only a small region and thus, perspective
distortions have to be considered only for larger disparity gradients.

The orange-colored bars (g-h) display the effect of the voting technique. In this case, the
data term was initialized using Ep(D) = Yy ming C4(x,D(x),d). For (g) we only disabled
the voting but left the propagation enabled and for (h) we disabled both voting and propaga-
tion. When comparing (g) to (h) it is noticeable that for Teddy in non-occluded regions the
propagation reduced the quality, which was due to a false match which was propagated into
the neighborhood. But also here the picture is clear that the propagation mainly improves in
occlusions. The impact of voting is best measured by comparing (h) to (d) because in both
cases no propagation is performed. From that, a considerable influence on the quality can be
observed in all image regions. This can be explained by the random walks: if a random walk
covers occluded and non-occluded pixels, all of them will receive support for the correct
depth if the true disparity and orientation is contained in the set S.
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Figure 3: A quahtatlve comparison to visualize the effect of dlsabhng processing steps of
our cost function. For each dataset we show the left image, a disparity map where specific
steps of the algorithm were disabled and a disparity map of the full method. Blue and red
pixels are wrong disparities in occluded and non-occluded regions respectively (i. e. the
disparity error is greater than one). We processed Flowerpots with one and eight a priori
surface orientations. At Rocksl we disabled the simulation in left and right images and the
propagation. At Reindeer we disabled the voting and at Baby3 the propagation additionally.

With all steps

In Fig. 3, we give a qualitative impression using difficult Middlebury datasets which
underline the previous observations.
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3 More Results

In the following we present more disparity maps. For the method of Oh et al. [2] we include
the results with activated occlusion filling. It is clearly visible that their technique drastically
reduces the quality. We also include the results for the method of Woodford er al. [3] which
fails at some curved objects, especially for Baby3. We also show results for our method
including our proposed global optimization and including our hole filling technique which
we described in the paper (but it should not be compared directly to the other methods).
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Figure 4: Results of different methods for the datasets Baby3, Reindeer, Cloth3 and Flower-
pots. The first column shows the ground truth disparities and the left images. Then disparity
maps and bad pixel images of the methods are presented. The bad pixel images show dispar-
ity errors > 1 pixel.
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Figure 5: An analysis of the statistical consistency measure at the datasets Aloe, Dolls, Rein-
deer and Teddy. It can be seen that there are no significant differences between different
datasets. The left charts show the number of matched pixels over consistency. The fraction
of matched pixels is defined as the number of valid disparities (i. e. which are considered
consistent) divided by the total number of pixels of the corresponding region. It can be
seen that occluded regions (occl) can be filtered out effectively and that non-occluded re-
gions (nocc) are much less affected by filtering. The right charts show the number of wrong
disparities over consistency. The overall error (all) drops quickly, because the number of
occluded pixels decreases dramatically.
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