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Abstract

In this paper, we propose a robust method for monocular face shape reconstruction
(MFSR) using a sparse set of facial landmarks that are detected by most of the off-the-
shelf landmark detectors. Different from the classical shape-from-shading framework,
we formulate the MFSR problem as a Two-Fold Coupled Structure Learning (2FCSL)
process, which consists of learning a regression between two subspaces spanned by 3D
sparse landmarks and 2D sparse landmarks, and a coupled dictionary learned on 3D
sparse and dense shape using K-SVD. To handle variations in face pose, we explicitly
incorporate pose estimation in our method. Extensive experiments on both synthetic and
real data from two challenging datasets using manual and automatic landmarks indicate
that our method achieves promising performance and is robust to pose variations and
landmark localization noise.

1 Introduction
Although research on face recognition has been progressing rapidly over the past decades,
practical deployment of face recognition systems is still limited. One challenging issue pre-
venting the practical application of most face recognition systems is the misalignment be-
tween 2D faces being matched caused by pose variation. According to Wagner et al. [36],
without good alignment, state-of-the-art methods [40] would suffer severe degradation in
performance. To solve the misalignment problem, two types of methods have been pro-
posed. The first type of solutions propose learning a regression between subspaces spanned
by different poses [5, 16, 27]. However, these methods are constrained by the consistency of
pose in training and testing images. In real applications face poses are more unconstrained,
and potential occlusions may introduce large bias when conducting hard regression.

As a result, the second type of methods, which propose aligning gallery and probe faces
using 3D faces, is attracting increasing attention in recent years. By aligning the faces to a
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(a) (b) (c) (d)
Figure 1: (a) The input 2D image; (b) frontal view of the face shape reconstruction; (c)
profile view of the face shape reconstruction; and (d) lifted UV texture.

3D face model, correspondence is built, which greatly facilitates the comparison between 2D
faces. For these algorithms [15, 19, 32] one critical step is acquiring a personalized 3D face
shape model, which is usually captured using 3D camera system during enrollment. Until
recently, the high cost of 3D cameras has limited such methods from being practically de-
ployed. In addition, due to existing deployment of 2D cameras and their broader availability,
there is a need for monocular face shape reconstruction (MFSR) [13, 18].

In this paper, we propose a Two-Fold Coupled Structure Learning (2FCSL) algorithm
that is capable of reconstructing 3D face models purely based on a sparse set of 2D land-
marks detected automatically by most of the recently proposed landmark detectors. The
novelty of our method lies in that, instead of assuming a selective mapping, we implicitly
learn the correlation between a sparse set of 3D facial landmarks and the 3D dense face
model. We believe this is more effective, as 3D face landmarks are not necessarily a sparse
subset of the 3D dense model. Compared with existing feature point-based methods which
use a simple linear mapping to select a sparse subset of landmarks from the dense model, our
method achieves better robustness to landmark localization errors that could be encountered
during landmark detection. Our method is fully automatic, thus could be easily integrated
in most 3D-aided face recognition systems. Our method could also serve as an independent
module that generates customized 3D face models for further applications. We conducted
several experiments and compared with a recent work [25]. Experimental results demon-
strate that our model achieves much higher accuracy and better robustness. Fig. 1 depicts the
reconstructed 3D face of Mona Lisa using the famous painting by Leonardo da Vinci and the
lifted texture in a pre-registered UV space [15].

Our main contributions are:

i. We propose a novel algorithm, 2FCSL, that is capable of reconstructing a 3D hu-
man face shape model from single images using a sparse set of facial landmarks and
achieves state-of-the-art performance.

ii. By explicitly incorporating 3D-2D pose estimation, our method achieves robustness
to arbitrary pose of the subject’s face.

iii. By formulating the MFSR problem into a two-fold coupled structure learning problem,
our method achieves robustness to landmark localization noise.

The rest of the paper is organized as follows. Section 2 reviews the literature in MFSR.
Our 2FCSL method is presented in Section 3. Experiments and results are presented in
Section 4. Section 5 summarizes our conclusions.

Citation
Citation
{Kakadiaris, Passalis, Toderici, Murtuza, Lu, Karampatziakis, and Theoharis} 2007

Citation
Citation
{Lu and Jain} 2008

Citation
Citation
{Toderici, Passalis, Zafeiriou, Tzimiropoulos, Petrou, Theoharis, and Kakadiaris} 2010

Citation
Citation
{Hsu and Peng} 2013

Citation
Citation
{Kemelmacher-Shlizerman and Basri} 2011

Citation
Citation
{Rara, Farag, and Davis} 2011

Citation
Citation
{Kakadiaris, Passalis, Toderici, Murtuza, Lu, Karampatziakis, and Theoharis} 2007



DOU, WU, SHAH, KAKADIARIS: 3D FACE RECONSTRUCTION FROM 2D LANDMARKS 3

2 Related Work
The problem of estimating the 3D shape of human faces from single images is of great inter-
est and has attracted considerable attention and research effort over the past decade. Many
approaches recently proposed to solve this problem could be considered as extensions of
Shape-from-Shading (SFS) methods, where a 3D shape is optimized to generate 2D render-
ings that match the input images. Direct application of SFS, however, has limited success
in 3D face reconstruction because the human face exhibits large albedo variation and has
both concave and convex regions [39]. To overcome this limitation, previously proposed
algorithms tend to use either shape priors of human faces [28, 44] or certain assumptions
about skin reflectance [3, 22]. Other methods in the literature propose to infer 3D face shape
by fitting a set of feature points between the 2D image and the 3D model. Compared with
SFS-based methods, feature-point-based methods do not make explicit assumptions about
face albedo and lighting, and thus are more robust to challenging illumination conditions.
Of all these methods, most propose to use a 3D morphable model (3DMM) constructed on
a set of well aligned 3D facial shapes [2, 4, 7, 14, 23, 24, 29, 37, 38, 39, 42], while others
require only a single reference shape [11, 17, 18, 25].

2.1 Methods based on Shape-from-Shading
Shape-from-shading is a family of methods proposed to recover the 3D shape of an object us-
ing lighting and shading cues [25]. SFS-based methods usually apply a brightness constraint
that indicates the total brightness error between the rendering of reconstructed 3D shape and
the input image. To render the human face from reconstructed 3D shape, SFS generally re-
quires knowledge of the scene’s lighting conditions and human faces’ reflectance properties,
which are complex in nature. As a result, most SFS-based methods for reconstructing 3D
human face pose strict assumptions regarding lighting sources and face albedo to simplify
the problem.

Dovgard and Basri [9] introduced an SFS-based method by taking into account not only
statistical constraints but also a geometric constraint of facial symmetry. By assuming ortho-
graphic projection and Lambertian reflectance model, brightness constraints that incorporate
unknown surface albedos and surface depths could be derived. The main drawback of the
method is that it is strictly limited to frontal faces and known illumination. As the human
face is not symmetric, the performance of the algorithm is intrinsically bounded. Smith and
Hancock [29] proposed to embed a statistical model of surface normals instead of surface
depths into the SFS framework. Their approach recovers a field of surface normals from a
single intensity image by exploiting the direct relationship between surface orientations and
image intensities. However, during 3D face reconstruction, an input 2D face first needs to be
manually aligned. This method is also limited to frontal face view and known illumination.
Rara et al. [23] proposed another SFS-based approach. By employing spherical harmonics
(SH), the proposed method achieves the capability of dealing with arbitrary illumination.
Rara et al. extended their method [24], where the classical SFS equation was cast as a Partial
Least Squares (PLS) regression problem, thus achieving rapid computation of the solution.
SFS works well for uniformly concave or convex objects; however, when it comes to the
more complex human face, with both concave and convex regions, SFS would probably fail.
This is because subtle changes in surface normals could cause significant changes in the cor-
responding integrated surface. Castelan and Hancock [6] proposed to integrate into the SFS
framework a local shape-based method for enforcing the convexity of the integrated surface.

Citation
Citation
{Wang and Yang} 2010

Citation
Citation
{Shimshoni, Moses, and Lindenbaum} 2000

Citation
Citation
{Zhao and Chellappa} 2001

Citation
Citation
{Basri and Jacobs} 2003

Citation
Citation
{Ramamoorthi and Hanrahan} 2001

Citation
Citation
{Aldrian and Smith} 2010

Citation
Citation
{Blanz, Mehl, Vetter, and Seidel} 2004

Citation
Citation
{Castel{á}n, Smith, and Hancock} 2007

Citation
Citation
{Hu, Jiang, Yan, Zhang, and Zhang} 2004

Citation
Citation
{Rara, Elhabian, Starr, and Farag} 2009

Citation
Citation
{Rara, Elhabian, Starr, and Farag} 2010

Citation
Citation
{Smith and Hancock} 2006

Citation
Citation
{Wang, Yan, Li, Zhang, and Li} 2005

Citation
Citation
{Wang, Zeng, Simon, Kakadiaris, Samaras, and Paragios} 2011

Citation
Citation
{Wang and Yang} 2010

Citation
Citation
{Zhang and Samaras} 2006

Citation
Citation
{Hassner} 2013

Citation
Citation
{Kemelmacher-Shlizerman and Basri} 2006

Citation
Citation
{Kemelmacher-Shlizerman and Basri} 2011

Citation
Citation
{Rara, Farag, and Davis} 2011

Citation
Citation
{Rara, Farag, and Davis} 2011

Citation
Citation
{Dovgard and Basri} 2004

Citation
Citation
{Smith and Hancock} 2006

Citation
Citation
{Rara, Elhabian, Starr, and Farag} 2009

Citation
Citation
{Rara, Elhabian, Starr, and Farag} 2010

Citation
Citation
{Castel{á}n and Hancock} 2006



4 DOU, WU, SHAH, KAKADIARIS: 3D FACE RECONSTRUCTION FROM 2D LANDMARKS

They utilized the local descriptors of shape-index and curvedness to characterize the regions
and perform necessary correction to surface normal orientations to enforce surface convexity
and the condition that the integrated surface has a global height maximum. An alternative to
3DMM used in SFS-based methods is using a single reference shape. One advantage of us-
ing a single reference shape is its simplicity, as constructing 3DMM requires all training 3D
shapes to be point-wisely aligned. Kemelmacher-Shlizerman and Basri [18] proposed to use
the input image as a guide to "mold" a single reference model to recover the corresponding
3D shape of either a different individual or a generic face. Another SFS-based approach that
uses a single reference model is proposed by Kemelmacher-Shlizerman and Basri [17]. By
employing a spherical harmonic approximation to model reflectance their method allows for
multiple unknown light sources and attached shadows.

2.2 Feature-Point-Based Method
Of all these SFS-based methods, one major drawback is that lighting and face albedo should
be known as a prior, or well approximated. In addition, as surface depths are computed by in-
tegrating surface normals, subtle changes in surface normals could cause significant changes
in the corresponding integrated surface. As a result, the input image is required to be accu-
rately aligned with the 3D face model. To overcome the limitation of SFS-based methods,
another category of approaches based on fitting a set of sparse feature points was proposed.
Blanz et al. [4] proposed a learning-based approach based on a 3DMM. By converting a set
of training 3D shapes into a vector representation and restricting possible solutions in the
span of training samples, the proposed method infers a dense 3D shape from sparse feature
points based on their correlations embedded in the 3D shape model. Hu et al. [14] proposed
an analysis-by-synthesis framework for face recognition under challenging conditions and
proposed to reconstruct a personalized 3D face shape from a single frontal face image with
neutral expression and normal illumination. Wang et al. [37] proposed a similar approach.
Given an input image, facial feature points are first detected. Then, an EM framework is
employed to infer the 3D shape and pose parameters iteratively. Zhang and Samaras [42]
proposed to build the statistical models directly in 3D space by combining the spherical har-
monics (SH) illumination representation and a 3DMM of human faces to recover 3D face
shape from single images with arbitrary pose and illumination. Castelan et al. [7] proposed a
coupled statistical model to recover 3D face shape from single images of faces. Aldrian and
Smith [2] proposed a method with two steps that can be iterated and interleaved. The estima-
tion of the 3D shape parameters is performed in a probabilistic framework which aims to find
the most likely shape coefficients based on an observation of a sparse set of 2D feature points.
Wang and Yang [39] proposed to learn mappings between 2D images and corresponding 3D
shapes via manifold alignment.

One major limitation of feature-point-based methods is the requirement for explicit esti-
mation of the camera view-point parameters, since coordinate-descent approaches are prone
to be trapped in local minima and provide no guarantee on the optimality of the estimations.
To overcome this limitation, Wang et al. [38] proposed a one-shot optimization approach
to simultaneously determine the optimal 3D landmark model, the corresponding 2D projec-
tions, and the visibility states without explicit estimation of the camera viewpoint. Song et
al. [30] proposed a coupled radial basis function network (C-RBF) method. Given paired
2D and 3D training data, C-RBF learns their intrinsic representations and the corresponding
mapping functions. Given a new 2D face, C-RBF first computes its 2D intrinsic representa-
tion, which is then approximated by a linear combination of its K-nearest neighbors. Using
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the same coefficients, the 3D intrinsic representation and the corresponding 3D face are re-
covered. Castelan et al. [8] evaluated four different Subspace Multiple Linear Regression
methods for recovering 3D face shape from single images. Hassner [11] proposed a data-
driven method for recovering the 3D shapes of faces viewed in single and unconstrained
photos. Rara et al. [25] proposed a model-based approach for 3D facial shape recovery us-
ing a small set of feature points from an input image of unknown pose and illumination. Our
work makes advances in this direction.

3 Method
In this section, we present our fully automatic framework for recovering a dense 3D face
shape from a single image. Our approach is based on the assumption that a sparse set of
fiducial landmarks have been located by a landmark detector. After successfully localiz-
ing the landmarks, two coupled relationships are learned by our algorithm: (i) 2D sparse
landmarks (2DSL) to 3D sparse landmarks (3DSL), and (ii) 3DSL to 3D dense landmarks
(3DDL). Our algorithm first recovers the 3DSL coefficient by learning a coupled regression
model from 2DSL to 3DSL, then the dense 3D face shape can be reconstructed by recovering
the coefficients of a coupled-dictionary.

Here are some notations we use in the following section: We represent the dense 3D
face as a shape vector Y i

3D = [xi
1,y

i
1,z

i
1, · · · ,xi

L,y
i
L,z

i
L] that consists of the XY Z coordinates

of its L vertices. With N 3D training faces, the shape model could be constructed by
stacking N shape vectors together, γd

3D = (Y 1
3D, · · · ,Y N

3D). The 3DSLs are represented by
χs

3D=(X1
3D, · · · ,XN

3D), where X i
3D is the vector representation of M 3D landmarks, and the

2DSLs are represented by χs
2D=(X1

2D, · · · ,XN
2D), where X i

2D is the vector representation of M
2D landmarks.

3.1 Sparse 3D Shape Recovery by Coupled-Basis PLS Regression
Given a 2D image X I

2D with 2DSL, we first estimate the 3D-2D projection matrix P using
least squares minimization, such that X I

2D = PX̄3D, where X̄3D is the mean of 3DSLs in the
training database. By projecting each 3DSL via P, we obtain the corresponding 2DSL χs

2D,
which is generated on-line.

According to the statistical shape model, each landmark vector could be presented by
the sum of the mean and its weighted orthogonal basis [12]. We decomposed the 2DSL and
3DSL into the following form:

X i
3D = X̄3D +

N−1

∑
m=1

ai
mU s

3D and X i
2D = X̄2D +

N−1

∑
n=1

ai
nU s

2D , (1)

where U represents the orthogonal basis, a is the weights and X̄ represents the mean of the
training set in the corresponding 2D/3D model. The reason we do not attempt to learn a
shared coupled structure as in Sec. 3.2 is because the 2D and 3D shapes may have different
inner constraints due to the difference in dimensions. It is more appropriate to learn a regres-
sion model to regress the coefficients of 2DSL to 3DSL rather than force them to share the
same representation.

Let Am = [a1
m,a

2
m · · · ,aN−1

m ] and An = [a1
n,a

2
n · · · ,aN−1

n ] be compact representations of the
corresponding shapes. A PLS regression [10] was learned from An to Am. The regression
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searches for the latent vectors that perform a simultaneous decomposition of Am and An with
the constraint to maximize the covariance between them. Since the 2DSL and 3DSL are
implicitly correlated by a linear projection matrix and the landmarks in both shape models
are constrained by the geometry layout, PLS regression can capture better the semantic rela-
tionships between the 2D shape and the 3D shape. In PLS regression, An = T PT , T T T = I,
Âm = T BCT = AnPPLS, where PPLS = (PT+)BCT , B is a diagonal matrix with regression
weights, and C is the weight matrix of dependent variables. The details of PLS regression
are described in [10].

Given the 2D landmarks X I
2D of the input face, we first obtain its 2D compact representa-

tion by solving for aI
n =U s

2D
−1(X I

2D− X̄2D). Then the aI
m is recovered by aI

m = aI
nPPLS. The

shape coefficient am can be subsituted to reconstruct the 3DSL through XR
3D = X̄3D +aI

mU s
3D.

As a result, we obtain the following equation: XR
3D = X̄3D +U s

2D
−1(X I

2D− X̄2D)PPLSU s
3D.

3.2 Dense 3D shape recovery by coupled-dictionary learning

Algorithm 1 Two-Fold Coupled Structure Learning framework for 3D dense landmark re-
covery
Input:

i. Input image feature points xI
2D.

ii. Model database γd
3D and χs

3D.

Output: Recovered 3D dense shape Y R
3D

1: Solve for the camera projection matrix, and determine P such that xR
2D = P · X̄ s

3D.
2: Project all 3DSLs to 2DSL using the computed projection matrix: X i

2D = PX i
3D.

3: Build the 3DSL statistical shape model using PCA: χ3D = X̄3D +AmU s
3D.

4: Build the 2DSL statistical shape model using PCA: χ2D = X̄2D +AnU s
2D.

5: Regress the coupled parameters from An to Am using PLS regression and obtain the
projection matrix PPLS.

6: Recover the 3DSL: XR
3D = X̄3D +U s′

2D(X
I
2D− X̄2D)PPLSU s

3D.
7: Solve Eq. 2 with K-SVD to obtain Λd

3D,Λ
s
3D.

8: Solve Eq. 3 with Lasso to obtain α∗.

9: 3D dense landmark is recovered by Y R
3D =

Λd
3Dα∗

β0
.

After we obtain the 3DSL, we aim to reconstruct the 3DDL. Since the 3DSL and the
3DDL are sampled from the same 3D face, they have the same dimensions and are intrinsi-
cally correlated. By forcing them to share the same representation coefficients in a coupled
subspace, their underlying relationship could be implicitly encoded. In this way, a coupled
dictionary model is built (Eq. 2). The coefficient α can be treated as the identity of the 3D
face. The dictionary is built with L1 constraints, so the input will be sparsely represented by
the 3DDL model. Sparse representation has been demonstrated to be effective in [40, 43],
which ensures a shape represented by only a few distinct elements in the dictionary. It works
especially well to cut down the noise that does not follow the constraint of the dictionary’s
training set.
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argmin
α,Λd

3D,Λ
s
3D

∥∥∥∥[β0γd
3D

χs
3D

]
−
[

β0Λd
3D

Λs
3D

]
α

∥∥∥∥2

2
s.t.‖α‖1≤β1 . (2)

Eq. 2 can be solved by the K-SVD [1] algorithm directly, and we obtain Λd
3D, the sparse

dictionary of 3DDL, and Λs
3D, the sparse dictionary of 3DSL. β1 is the parameter controlling

the sparsity of the coefficient, and β0 is the parameter balancing the 3D dense shape and 3D
sparse shape. All parameters including the dictionary size t are tuned empirically.

After we successfully reconstruct XR
3D (Sec. 3.1), we first recover the coefficient of 3DSL

by solving Eq. 3:

argmin
α∗

∥∥XR
3D−Λ

s
3Dα

∗∥∥2
2 +β2 ‖α∗‖1 +β3 ‖α∗‖2 . (3)

The LASSO algorithm [31] is used to obtain the solution, and we force α∗ to have similar
sparsity as in Eq. 2 by automatically tuning β2. We also apply L2 regularization on the
solution α∗. When we have α∗ the final Y R

3D is reconstructed using the coupled model’s

property, Y R
3D =

Λd
3Dα∗

β0
. Alg. 3.2 summarizes the major steps of our proposed method.

4 Experiments
In this section, we evaluate the proposed method using both synthetic and real data. To
construct the 3DMM, we selected 165 3D facial scans from the FRGC v2.0 [21] and the
UHDB31 [34] datasets. By fitting them with the Annotated Face Model (AFM) [15], which
consists of 7,597 vertices, dense vertex-wise correspondence was established across the
training 3D faces. On each fitted 3D face, we manually annotated 28 facial landmarks,
which are illustrated in Fig. 2(a). We selected these key facial points because they are sta-
ble against facial expressions and they are detected on 2D faces by many recently proposed
landmark detectors [26].

(a) (b) (c)
Figure 2: Illustration of our 3DMM and 2D faces in both databases: (a) Mean 3D face shape
and mean 3D landmarks of the constructed 3DMM; (b) UHDB11 gallery set; and (c) BDCP
probe set.

4.1 Experiments on Synthetic Data
To evaluate the reconstruction accuracy of our proposed algorithm, we first conducted ex-
periments on synthetic data. Of the 165 collected 3D faces, we selected one as testing data
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(a) (b)
Figure 3: Boxplot of reconstruction error on synthetic testing data: (a) per-vertex Euclidean
distance; and (b) per-vertex difference of normals.

(a) (b)
Figure 4: Cumulative distribution of reconstruction error on synthetic testing data: (a) per-
vertex Euclidean distance; and (b) per-vertex difference of normals.

and used all others as training data. By projecting the 3D landmarks of the selected 3D face
into 2D space using randomly generated projection matrix corresponding to pan rotations
within [−20 ◦,+20 ◦], we synthesized multiple (ten) 2D faces with arbitrary poses. To sim-
ulate landmark localization error, we added Gaussian noise with variance σ = 5 pixels to
the landmark location. Based on the synthesized 2D data, 3D faces were reconstructed and
reconstruction error was computed in terms of per-vertex Euclidean distance (mm) and per-
vertex difference of normals (degrees). We repeated this process 80 times and empirically
selected the optimal values for our parameters to be, t = 164, β0 = 0.15, β1 = 20, β2 = 0.3,
and β3 = 0.35. We also implemented a recently proposed algorithm of [25], which we will
refer to as Rara-IJCB11, and compared it with our method.

Fig. 3 depicts the boxplot (randomly selected 20 out of 80 tested subjects) of the recon-
struction error. Fig. 4 depicts the cumulative distribution of all testing samples w.r.t. the
reconstruction error. Results indicate that, when compared with [25], our 3D reconstruction
is more accurate and our algorithm is more robust to pose variation.
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(a) (b)

(c) (d)
Figure 5: Cumulative distribution of reconstruction error on 23 2D faces of UHDB11 gallery
set (a-b), and 381 2D faces of BDCP probe set (c-d): (a,c) per-vertex Euclidean distance; and
(b,d) per-vertex difference of normals.

4.2 3D Face Reconstruction on Real Datasets

In the second experiment, 3D face reconstruction accuracy on two real datasets is systemat-
ically evaluated. The UHDB11 dataset [33] and the BEST Development Challenge Problem
(BDCP) face dataset [35] are used in this experiment. The size of face region in UHDB11 is
around 1,000*1,000 pixels and as for BDCP is about 250*250 pixels.

The UHDB11 dataset consists of 23 subjects. The gallery set contains a 2D frontal face
and a 3D facial scan of each subject. Fig. 2(b) depicts several examples of the 2D faces in
the gallery of the UHDB11 dataset. We used the 2D frontal faces with manual landmarks
in the gallery to reconstruct the 3D faces for all the 23 subjects. The 3D facial scans in
the gallery were then used as groundtruth to compute the error of the reconstructions. Figs.
5(a-b) depict the cumulative distribution of reconstruction error for both methods. Results
show that our method outperforms [25] and achieves more accurate reconstruction of 3D
face shapes.

The probe set of the BDCP database consists of 381 2D and 3D faces of 95 subjects [20].
Different from the gallery set of the UHDB11 database, the 2D faces in BDCP’s probe set, as
illustrated in Fig. 2(c), have arbitrary pose. Instead of using manual annotations, we applied
a recently proposed 2D landmark detector [41] to detect the 28 facial landmarks on the 381
2D faces. We have also manually checked our 3DMM to make sure it did not include the
3D face of any subject in the BDCP subset. Figs. 5(c-d) depict the cumulative distribution
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of reconstruction error for both methods. Our method outperforms Rara et al.’s method [25]
with much smaller reconstruction error. This result also indicates that our method is more
robust against 2D face pose and landmark localization noise.

5 Conclusions
We have presented a robust method for monocular face shape reconstruction using a sparse
set of facial landmarks. We proposed to recover the 3D face shape from a single 2D im-
age by learning a two-fold coupled structure that consists of the regression between two
subspaces spanned by 3D sparse landmarks and 2D sparse landmarks, respectively, and a
coupled dictionary of 3D dense and sparse shape. Our experiments on synthetic data indi-
cate that our method is robust to face pose variations. Experiments on real datasets with both
manual annotations and automatic landmarks detected by an off-the-shelf landmark detector
suggest that our algorithm is robust to landmark localization noise and achieves promising
performance.
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