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Abstract

Face recognition in unconstrained videos is challenging due to large variations in
pose, illumination, expression etc. We address the problem from two different aspects:
To handle pose variations, we learn a Structural-SVM based detector which can simul-
taneously localize face fiducial points and estimate the face pose. By adopting a differ-
ent optimization criterion from existing algorithms, we are able to improve localization
accuracy. To model other face variations, we use intra-personal/extra-personal dictio-
naries. The proposed framework is advantageous in terms of both accuracy and scal-
ability. We demonstrate through experiments that our algorithm achieves state-of-arts
performance on challenging public databases, even when the training data come from a
different database.

1 Introduction
We are witnessing a growing interest in video-based face recognition (VFR) research in
recent years. Part of this is driven by the increasing demand for processing digital video
contents over the Internet. It is reported that over 14,000 hours of new videos are uploaded
to Youtube every day. From a technical perspective, the attraction of videos comes from
the fact that they contain extra spatial-temporal information that can be exploited to improve
recognition performance. Moreover, videos arise naturally in many applications like surveil-
lance. It is expected that VFR can play an important role in cases where the still image-based
algorithms do not return satisfactory results.

In this paper, we attempt to improve the performance of VFR in the following two as-
pects:
Face Localization and Normalization As the first steps in almost every VFR algorithm,
this is where we try to bridge the gap between unconstrained and constrained videos in terms
of source data quality. Recent advances in object detection technology have stimulated new
research on “tracking by detection” approaches and facial feature detectors. The former is
more robust against drift errors in comparison with traditional trackers. The latter enables
us to perform accurate face alignment when large pose variations are present. However,
tracking and aligning faces “in the wild” is still a highly challenging task.
Scalability and Generalization The majority of existing VFR algorithms are devoted to
discovering features which are closely correlated with identity. However, it requires a large
amount of training data to effectively characterize a subject. More often than not, we have
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Figure 1: Processing pipeline of the proposed video-based face recognition algorithm.

insufficient training samples to account for all possible variations for each subject. As a
result, decision boundaries of the classifiers are often highly dependent on the training data
and are prone to change every time we add new subjects to the database. Such a strategy is
inherently inflexible and unscalable. Moreover, for practical uses, while it is desirable that
a VFR algorithm be capable of working across databases, most existing approaches have
difficulty in addressing this issue.

Our fully automatic VFR algorithm works as follows: Faces are first localized from
videos using a tracking by detection approach. A fiducial point detector is then applied
to each tracked face. The detector is a structural SVM (SSVM) learned by optimizing an
objective function that emphasizes on improved localization accuracy. It provides both co-
ordinates of feature points and the quantized face pose. Based on the estimated pose, the
localized faces are then aligned to pose-specific common reference coordinate frames. They
are further clustered using a non-parametric Bayesian model to remove temporal redundancy.
We construct pose-specific dictionaries as our classifiers. However, in our work, the discrim-
inative dictionaries do not directly assign an identity label to each test sample. Rather, it
attempts to distinguish the intra-personal face appearance variations from the extra-personal
ones. Such dictionaries are generic in nature and are capable of working across data domains.
An overview of the proposed approach is given in Figure 1.

Our contributions are three-fold: First, we develop a novel VFR algorithm based on dis-
criminative dictionary learning and the concept of intra-personal variations. As a result, the
algorithm can achieve good performance in terms of accuracy, generalizability and scala-
bility at the same time. Second, we propose an end-to-end solution to the real-world VFR
problem. It allows us to reliably localize and recognize face videos “in the wild”. Third, we
demonstrate through comprehensive experiments that the proposed algorithm outperforms
state-of-arts methods on multiple public VFR databases.

2 Related Works
Video-based face recognition can be viewed as a special case of a broader category: face
recognition based on image set. In practice, the two terms are often used interchangeably
when the image sets are sampled from videos. Various representations of image sets have
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been explored, including linear subspaces [30], dictionaries [5, 22], manifolds [10, 15, 25,
26], probability distributions [1], dynamical models [19] etc.

In recent years, sparse coding [4] has gained popularity in the field of image classifica-
tion. Wright et al. [28] successfully applied their Sparse Representation-based Classification
(SRC) framework to the still image-based face recognition problem. The K-SVD algorithm
[23], an iterative method to learn over-complete dictionaries, is one of the most widely used
dictionary learning approaches. However, as it focuses on the reconstruction error using
sparse codes, K-SVD is not well suited for classification tasks. Many discriminative dictio-
nary learning algorithms which include classification error terms in the objective function
have been proposed. Jiang et al. [13] presented a discriminative dictionary learning frame-
work by enforcing label consistency constraints in addition to sparsity and reconstruction
error terms. The projection matrix used for classification is learned along with the dictio-
nary. In [31], the additional constraints include the discriminative fidelity terms and the
discriminative coefficient term based on Fisher’s discriminant.

In [20], Moghaddam et al. first proposed the Bayesian face recognition algorithm. The
intrapersonal subspace is defined as the subspace constructed from within-class sample dif-
ferences. Similarly, the extrapersonal subspace is constructed using the between-class sam-
ple differences. At test time, the difference between a probe and a galley image is projected
onto the two subspaces and a Bayesian classifier is applied to obtain the recognition result.
The metric learning approach proposed in [9] attempted to learn a symmetric positive def-
inite matrix, which can be used to calculate the Mahalanobis distance for a pair of images.
This is closely related to the method based on Gaussian densities proposed for Bayesian face
recognition.

Face fiducial points detection has been shown to be critical for solving the unconstrained
face recognition problem. Various detectors [2, 8, 32] have been proposed to utilize both
spatial relationship and appearance information to localize the feature points. Zhu and Ra-
manan [32] extended the Deformable Parts Model (DPM) for face detection, pose estimation
and feature localization. The model is also a mixture of tree-structure sub-models, each of
which corresponds to a pose prototype. It is trained using the max margin criterion and
hence can be globally optimized. The facial feature detector used in our work shares some
similarities with this work in that we also enforce max margin constraints to train a mixture
of pose-specific models. However, as we show in Section 3, while their objective function is
designed to guarantee the capabilities of detecting both the whole face and the facial features,
ours is tuned to improve the accuracy in fiducial points localization.

3 Face Localization and Alignment
Our face localization module falls in the “tracking-by-detection” paradigm. We apply a
Viola-Jones face detector to each frame of a video. Then we evaluate the image likelihood
of each face candidate as:

L(xi,t |It) = lnN (xi,t |xt−1,Σ)+λ ln p(xi,t |Wt−1) (1)

, where xi,t is the bounding box’s coordinates of the i-th face candidate found in frame It ,
and W is a WSL appearance model [12] updated at each frame. Apparently, the two terms
penalize location inconsistency and appearance inconsistency respectively. The parameter
λ which determines the relative weights of the two terms is usually set empirically. The
candidate with the largest likelihood is added to the face track and updates the appearance
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model. If no detection responses have likelihood values above a set threshold or no faces
are detected at all in the current frame, a particle filter will be initiated 1. It performs face
tracking until the detector starts to find a valid face again. The particle filter also uses the
likelihood model as defined in (1). This simple strategy proved to be very effective in our
experiments.

To detect face fiducial points from the localized face, we train an SSVM. Its coeffi-
cients control the relative weights of feature functions which are computed based on a
mixture of pictorial structure models {Tm,m = 1,2, ...,M}. Each component of the mix-
ture accounts for the configuration of fiducial points for a specific range of face poses.
Here, we divide the poses according to the yaw angle of face and the boundaries are set
as {−45◦,−30◦,−15◦,15◦,30◦,45◦}. We opt for multiple pose-specific models rather than
a single shared model for two reasons. First, face fiducial points could have totally different
configurations across poses. For example, when a face is in profile pose, half of the fiducial
points will be occluded. Even for those feature points which are visible in all the poses,
the pose-specific model can enforce constrains on the state space. Second, such a mixture
model will allow us to estimate the face pose as a byproduct. Pose information is required
when we construct the intra/extra-personal dictionaries at the next stage. Note that for the
purpose of face alignment, usually a set of sparse features is sufficient. Following [24], we
pick eye corners, mouth corners, nose corners and nose tip as points of interest. Intuitively,
the number of feature points in each model varies due to occlusion.

The structure of our face fiducial point model is similar to that of the mixture of pictorial
model defined in [32]. For a fiducial point configuration z = {L,m}, where L = {li} =
{(xi,yi)} are the image coordinates and m is index of the mixture component that the fiducial
points are associated with, we define its score function as:

f (I,z) = wTΦ(I,z) = wT
mφm(I,L) = ∑

i∈Vm

qiT
m ψm(I, li)+ ∑

i j∈Em

ai j
mdx2 +bi j

mdx+ci j
mdy2 +di j

mdy

(2)
, where wT = [wT

1 ,w
T
2 , ...,w

T
M], Φ(I,z)T = [0, ...,0,φm(I,L),0, ...0] . In (2), Vm and Em are

the nodes and edges of the m-th pictorial model in the mixture, respectively. ψm(I, li) is a
local visual descriptor extracted at the neighbourhood of li. In our case, the CENTRIST
descriptor [29] is used. For every pair of fiducial points connected by an edge, the pairwise
term in (2) captures their spatial relationship. As defined in [32], dx and dy are the displace-
ments of fiducial point i w.r.t. fiducial point j in x and y directions. The sparse augmented
feature function φm(I,L) only activates the mixture component whose index is encoded in
z. We can jointly localize the fiducial points and estimate the face pose by maximizing the
potential function: z∗ = {L∗,m∗}= argmax

L,m
wT

mφm(I,L).

To learn the parameter w, we solve the following margin re-scaling structure SVM prob-
lem:

min
w

1
2
‖w‖2 +C∑

n
max
z∈Z

[∆(z,zn)+wTΦ(In,z)]−wTΦ(In,zn) (3)

. In (3), (In,zn) is an image-label pair in the training database and Z is the viable label
configuration set. As in the single-output SVM case, each training sample is assigned with
a slack variable ξn to relax the constraints. ∆(z,zn) is the loss function of a output z when
measured against the ground-truth label zn. Suppose there are S fiducial points in total and
the subset of indexes of those fiducial points visible for the m-th pictorial model is S(m). The

1In most of the videos we experimented with, at least one face is present in each frame.
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loss function is defined as follows:

∆(z,zn) =
S

∑
s=1
‖δs‖2, δs =


Ls−Ln,s if s ∈ S(m)∩S(mn)

Ls if s ∈ S(m)\S(mn)

c if s ∈ S(mn)\S(m))

(4)

. We assign a constant c in the third case because if a false positive feature point shows up in
prediction, it should be penalized uniformly, irrespective of its coordinates.

In comparison, the optimization function used in [32] is:

min
w,ξn≥0

1
2
‖w‖2 +C∑

n
ξn

s.t. ∀n, ∀ In ∈ neg, z ∈ z wTΦ(In,z)≤−1+ξn ∀In ∈ pos,wTΦ(In,zn)≥ 1−ξn, ∀k,wk ≤ 0
(5)

, where pos contains the positive training images with a face and neg contains the negative
ones with only background. Apparently, the constraints in (5) focus on the margin between
face and non-face images. In contrast, we use a different definition about positive and nega-
tive training samples: Every training image in our case has a face in it. The positive samples
are the ground-truth fiducial point configurations of the faces and the negative samples are
just any configurations other than the ground-truth ones. Therefore, our objective function
explicitly imposes constraints on the margin between correct and wrong landmark predic-
tions. Moreover, while [32] treats all the fiducial point configuration equally for a negative
training image, in our case the margin is re-scaled by a loss function ∆(z,zn) which penalizes
the negative samples according to their misalignment errors. In summary, our method is not
designed to detect face and facial feature points simultaneously as in [32]. Instead, it aims
for higher accuracy in localizing the landmarks from a previously detected face.

We employ the subgradient algorithm to learn the parameter w. At test time, we follow
a two-step procedure to solve the inference problem defined in the objective function. First,
we solve for the best L for each individual model in the mixture. Although the cardinality of
the entire configuration space is extremely large (in the order of 1018), we only need to be
concerned with a very small portion of it at run-time, thanks to the models’ tree structure.
Dynamic programming (more specifically in this case, the Max-sum inference algorithm)
can be applied at this step to select the best configuration efficiently. Then we compare
across models to choose the optimal solution. The result of model selection also gives a
rough estimate of face pose. We detect fiducial points on every face localized by the detector
or tracker and it takes about 30 ms on a workstation equipped with an Intel Core i5 3.3GHz
CPU. A linear conformal image transformation calculated from point correspondences is
then applied to align faces to a canonical frame. Note that there are M such canonical frames,
each of which is associated with a model from the mixture.

4 Intra-personal/Extra-personal Difference Dictionary
4.1 Sparse Coding
We now discuss the problem of modeling intrapersonal face appearance differences using
sparse coding. Since video can be viewed as a special case of an image set, we will first dis-
cuss general image/frame-based recognition using the intrapersonal dictionary and leave the
video case to Section 4.2. Let X = {xi, i = 1,2, ...,N} ∈ Rd×N be the set of vectorized intrap-
ersonal difference training images/frames. The intrapersonal dictionary D= [D1,D2, ...,DK ],
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where Dk ∈ Rd , is learned by solving the following constrained optimization problem:

min
D,α

N

∑
i=1

1
2
‖xi−Dαi‖2

2 s.t. ∀i, ‖αi‖0 < ε (6)

. In other words, the goal is to minimize the L2 reconstruction error and guarantee the
reconstruction coefficient vector to be sparse at the same time. Each Dk is called an atom of
the dictionary, and αi is called a sparse code. The sparsity parameter ε is usually empirically
chosen from the range 10 to 40. One of the most frequently used dictionary learning methods
is the K-SVD algorithm [23]. It is an iterative procedure with two alternating optimization
steps: First fix the dictionary to solve for the sparse code, and then fix the sparse code to
update the dictionary.

4.2 Label-Consistent Dictionary Learning for VFR
It has been argued that separating dictionary learning from classier design may lead to sub-
optimal solutions for the final classification task. In view of this, we follow the Label-
Consistent K-SVD (LC-KSVD) algorithm [13] to jointly learn a generative shared dictionary
and a discriminative projection matrix. Although the shared dictionary is composed of two
sub-dictionaries corresponding to intra-personal and extra-personal differences respectively,
the sparse code of any input difference vector is computed by using the complete set of atoms
in the dictionary. This is different from the class-specific dictionaries in Section 4.1. On the
other hand, a matrix W ∈ R2×d that encodes the discriminative information of the sparse
codes is learned along with the shared dictionary. For the sparse codes A = [α1,α2, ...,αN ]
resulting from s set of intra-personal and extra-personal difference vectors, the projection
WA is supposed to form two well-separated clusters. Aside from that, the LC-KSVD also
looks for a linear transformation B ∈ RK×d which encourages the samples from the same
class to be reconstructed using similar atoms, i.e. the entries in the sub-dictionary of that
class. This constraint can be written in the form: BX = Q, where Q ∈ RK×N has a block
diagonal form: The c-th block contains entry Qi j, i ∈ vc, j ∈ hc, where vc are the indices
of atoms from class c (i.e. intra-personal or extra-personal) and hc are the indices of train-
ing instances from class c. All the non-zero entries in Q are assigned with unit value. To
summarize, the final optimization problem has the following form:

min
D,A
‖X−DA‖2

2 +µ‖Q−BA‖2
2 +σ‖F−WA‖2

2 +λ ∑
i
‖αi‖1 (7)

, where the columns of F ∈ R2×N are labels of the training instances in X, represented using
the 1-of-K coding scheme. (7) can be converted to a typical K-SVD objective function and
solved using the same procedure.

According to a large body of empirical research, pose variations often cause within-class
variance to exceed between-class variance in face recognition. Predictably, they present a
great challenge to the intrapersonal/extrapersonal difference dictionary learning. Therefore,
we choose to separate pose from other nuisance factors which case variations in the intraper-
sonal/extrapersonal domain. To this end, we first group the aligned training images according
to face pose that has been estimated along with the fiducial points in 3. The difference images
are then calculated within each pose group and are used to learn pose-specific shared dictio-
naries {Dm}, where m corresponds to the mixture index in Section 3. Naturally, to predict
the class label (i.e. same-person or different-person) of a difference image with pose m at
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test time, only the dictionary Dm is relevant and will be activated in calculations. Therefore,
we drop the mixture/pose superscript to avoid cluttered notation and keep the dependency
on pose implicit.

In our work, calculating sparse codes for every frame pair is not only computationally
expensive, but also unnecessary due to the significant temporal redundancy present in video
signals. The redundancy can be removed by finding representative frames, which was of-
ten accomplished using the K-means algorithm. However, it is still an open problem to
adaptively determine K at run-time, and it is obvious that a pre-determined K would be un-
satisfactory considering the large variations of video contents. In view of that, we choose
to fit a non-parametric Bayesian model to each video. The resulting model has infinite
number of Gaussian mixtures controlled by a Dirichlet process DP(β ,H) [17], where β

is the concentration parameter and H is the base probability measure. The mixture weights
{πk,k = 1,2, ...,∞} are generated from the Griffiths-Engen-McClosky (GEM) process [21],
i.e.:

πk = ρk

k−1

∏
l=1

(1−ρl) ρk ∼ Beta(1,β ) (8)

. The mean and covariance parameters {θk} of the mixtures are sampled from H. Given
a video V , we assume that each frame {I f , f = 1, ...,F} is assumed to be generated by
first drawing a component label z f from a Multinoulli distribution with parameter {πk,k =
1,2, ...,∞} and then sample from a Gaussian distribution with parameter {θk}. We adopt the
variational inference approach to fit the model due to its efficiency. The posterior distribution
P(z f |V ) is used for clustering. By using the Dirichlet process mixture model, new clusters
can be generated when more frames are observed, and there is no need to know number of
clusters a priori.

After fitting the model, a video V with K clusters can be characterized by the set of cluster
centers. We further exrtact feature vectors {vk, k = 1,2, ...,K} from these representative
images. Both training and test videos go through this process. For the training videos, the
intrapersonal features {xIn = vm

i −vn
j , ID(Vi) = ID(V j)} and the extrapersonal ones {xEx =

vm
i −vn

j , ID(Vi) 6= ID(V j)} are employed to learn the dictionary D and the projection matrix
W . At the test stage, we iterate over every probe-gallery video pair {Vp,Vg} and calculate
feature difference vectors {xm,n

p,g = vm
p −vn

g} from the representative cluster centers. We then
solve for the sparse representation of xm,n

p,g : α
m,n
p,g = argmin

α

∑
N
i=1

1
2‖x

m,n
p,g −Dα‖2

2 + λ‖α‖1 .

As mentioned earlier, there is an implicit pose index in the equations above. That is, we
only calculate feature vector differences for face images with the same pose, and activate the
dictionary of the corresponding pose to compute sparse codes.

For video-based recognition, we have: ID(Vp) = argmax
g

s(p,g), where

s(p,g) =
M

∑
m=1

N

∑
n=1

1(t1Wα
m,n
p,g > t0Wα

m,n
p,g )/MN (9)

. Here, we use t0 = [0,1]T and t1 = [1,0]T to denote the 1-of-K coding label for intra-
personal and extra-personal class, respectively. 1(·) is the indicator function. One of the
attractive features of the proposed algorithm is that it naturally fits in with the verification
protocol. In a hard decision scheme, for each video pair {Vp,Vg}, we apply majority voting
on top of the binary "same person/different person" results of the frame pairs. This will yield
a single operating point on the ROC curve. Alternatively, we may adopt a soft decision rule.
The entry of the similarity matrix is the same as the s(p,g) defined in (9).
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Table 1: Comparison of Video-Based Face Recognition Results on the Youtube Celebrity
Video and the Honda/UCSD database

Method Youtube Celebrity Honda/UCSD
MSM[30] 61.1 92.5
MMD[26] 62.9 97.1
MDA[25] 65.3 100.0
CHISD[3] 66.3 90.5
SANP[10] 68.4 93.6
COV + PLS[27] 70.1 100.0
MA[7] 74.6 99.0
MSSRC[22] 80.8 -
Proposed-I(Same-Database) 81.9 97.4
Proposed-II(Cross-Database) 78.6 97.4

5 Experiments
5.1 Facial Feature Localization
We trained our facial feature detector and evaluated its performance on a subset of the An-
notated Facial Landmarks in the Wild (AFLW) database [16]. The database contains about
25,000 face images downloaded from Flickr, each manually annotated with up to 21 fidu-
cial points. There are 5872 and 2000 face images in the selected training set and the test
set, respectively. They are mutually exclusive. We cropped the face region using the re-
sponse of a Viola-Jones face detector and normalize it to 60× 60. The training data were
partitioned into groups according to pose. Although filter responses were computed for M
mixture components at test time, we trained M−1

2 of them by utilizing the symmetric prop-
erty of a human face and mirroring the left-posed face images. Within each group of data,
we collected statistics of L to determine the configuration space Z . The reference algorithms
used for comparison were the DPM-based one proposed in [32] and the one based on the
Haar feature + Gaussian mixture tree [24]. The localization error was measured by the av-
erage distance (in pixels) between the predicted fiducial points and the ground truth ones,
and normalized by inter-ocular distance. As shown in Figure 2, the proposed facial feature
localization algorithm outperforms the two reference algorithms. However, the DPM detec-
tor is able to provide face detection output that is not supported by our method. It has also
been observed that for large poses, the advantage of the proposed approach in localization
accuracy is more evident.

5.2 Video-Based Face Recognition
Youtube Celebrity Video Database: This database [14] has been widely adopted for eval-
uating the video-based face recognition algorithms. The database contains 1910 Youtube
video clips of 47 subjects. Most of the videos were extracted from news TV or movies, and
hence exhibit large pose and illumination variations. The low resolution of the videos also
poses a challenge to face recognition. In other words, this database aims to test the perfor-
mance of VFR algorithms under uncontrolled settings. We follow the protocol in [7, 22, 25],
i.e., randomly choosing 3 clips per subject as galleries and 6 per subject as probes.

Honda UCSD Database: This database [18] consists of 59 videos of 20 subjects. The
videos are divided into a training set which contains one video per subject and a testing set
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Figure 2: Face fiducial point detection results on the AFLW database (left) and the face
verification results on the Youtube Celebrity Video database (right).

Table 2: Comparison of Video-Based Face Recognition Results on the Buffy database
Method Buffy Database
LDML[6] 85.9
MSSRC[22] 86.3
Proposed-I(Same-Database) 88.3
Proposed-II(Cross-Database) 85.2

which contains 1 to 4 videos per subject. Each video sequence is recorded in an indoor
environment at 15 frames/second and lasts at least 15 frames. Faces in the database undergo
significant head motions and expression variations.

Buffy Database: This dataset consists of 639 face tracks from the TV series “Buffy the
Vampire Slayer”. We removed the face tracks whose id is labeled as unknown characters,
leaving a subset of 483 face tracks for 8 main characters. Following [6], they are separated
into a training set of size 227 and a test set of size 256.

For the Youtube Celebrity Video database and the Honda UCSD database, we applied
the tracking-by-detection method as described in Section 3 to localize the face. For the
Buffy dataset, we used the face tracks provided by the ground truth directly. We then si-
multaneously detected facial fiducial points and estimated the face pose using the proposed
structural-SVM detector. The result was then employed to align the face region to a canoni-
cal frame pre-specified for the corresponding pose. We calculated the self-quotient image to
normalize the illumination. Pose-specific masks were imposed to suppress the background
pixels. LBP and TP-LBP features were extracted and concatenated to form the feature vector.
PCA was applied to reduce the dimension of feature vector to 400.

We trained our shared dictionary under two different settings. In the first one, the dic-
tionary was learned from each database’s own training set. We call this the same-database
dictionary mode. Alternatively, because the intra-personal/extra-personal face variations are
generic, we can learn a dictionary using training data of an entirely different set of sub-
jects. We call this second case the cross-database dictionary mode. The number of intra-
personal or extra-personal feature vector pairs that can be used for training is in O(NK2)
and O(N2K2) respectively, where N is the number of subjects and K is the average num-
ber of clusters discovered by the Dirichlet process Gaussian mixture model from the videos
of the same subject. The potential number is huge for a large database like the Youtube
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Celebrity Video dataset, especially when we are concerned with the extra-personal pairs.
This is also true if we are to learn a dictionary from an external database. On the other
hand, the number of intra-personal pairs generated from a small training set, such as that
of the Honda/UCSD database, might be insufficient for learning a dictionary. In the former
case, we pruned candidate pairs by keeping only around 4000 samples in each of the intra-
personal and extra-personal training set. We attempted to distribute the samples as evenly as
possible and avoided only using samples from a small subset of videos. In the latter case, we
augmented the pool of intra-personal pairs with samples from external data. To train the dic-
tionary in the cross-database mode, we used the LFW database[11] which has 5749 people,
among which 1680 subjects have two or more images. We expect that the different variations
covered by the database can lead to a dictionary with good generalization property.

We compare the proposed methods with several existing VFR algorithms on the three
databases. It is apparent from a careful study of reported experimental results that not all
the algorithms are compared on all the databases. On the Youtube Celebrity Video database
and the Honda/UCSD database, the compared existing algorithms include: Mutual Sub-
space Method (MSM)[30], Manifold-Manifold Distance (MMD)[26], Manifold Discrimi-
nant Analysis (MDA)[25], Convex Hull based Image Set Distance (CHISD)[3], Sparse Ap-
proximated Nearest Point (SANP)[10], Covariance Partial Least Square (COV + PLS)[27],
Manifold Alignment (MA)[7] and Mean Sequence Sparse Representation-based Classifica-
tion (MSSRC) [22]. On the Buffy database, we compare with Logistic Discriminant-based
Metric Learning (LDML) [6] and MSSRC. The results are presented in Tables 1 and 2. As
shown in the tables, in all three databases, both of the same-database and the cross-database
dictionary modes of the proposed algorithm achieve comparable results w. r. t. the state-of-
the-art. On the most challenging Youtube Celebrity Video database, our method produces
slightly better results than the one most recently reported in [22] and outperforms the other
algorithms by a large margin. The relative lower classification rate on the Honda/UCSD
database may be due to insufficient training samples. A noticeable fact is that using the
cross-database dictionary learned from the external database usually leads to a degraded
performance. This is consistent with our intuition that cross-domain learning is in general a
more difficult problem. But the cross-domain dictionary is advantageous in terms of scalabil-
ity and flexibility, as the training difference vectors are complementary to each other and can
be shared. Finally, the proposed framework naturally supports the face verification protocol.
Therefore, we also investigate the performance of our algorithm in the verification mode that
is described in Section 4. The result on the Youtube Celebrity Video database is plotted in
the form of ROC curves in Figure 2. We compare with the MMD and MDA because their
outputs are distances, from which the ROC curves can be conveniently generated.

6 Conclusion
We introduced a novel framework for video-based face recognition. It is based on the generic
concept of intra-personal/extra-personal variations, and hence leads to greater scalability. We
exploited the strengths of sparse coding in classification and learned a discriminative dictio-
nary from these variations. In addition, we presented a facial feature detection method for
accurate face alignment in unconstrained videos. Our scheme is flexible enough to work
in both identification and verification modes. It can also be trained and tested on differ-
ent databases. We conducted experiments on three public databases and demonstrated the
performance of the proposed approach through comparison with existing algorithm.

Citation
Citation
{Huang, Ramesh, Berg, and Learned-Miller} 2007

Citation
Citation
{Yamaguchi, Fukui, and Maeda} 1998

Citation
Citation
{Wang, Shan, Chen, and Wen} 2008

Citation
Citation
{Wang and Chen} 2009

Citation
Citation
{Cevikalp and Triggs} 2010

Citation
Citation
{Hu, Mian, and Owens} 2011

Citation
Citation
{Wang, Guo, Davis, and Dai} 2012

Citation
Citation
{Cui, Shan, Zhang, Lao, and Chen} 2012

Citation
Citation
{Ortiz, Wright, and Shah} 2013

Citation
Citation
{Cinbis, Verbeek, and Schmid} 2011

Citation
Citation
{Ortiz, Wright, and Shah} 2013



DU,CHELLAPPA: VIDEO-BASED FACE RECOGNITION 11

References
[1] O. Arandjelovic and R. Cipolla. Face recognition from face motion manifolds using

robust kernel resistor-average distance. In Proceedings of the 2004 Conference on
Computer Vision and Pattern Recognition Workshop, volume 5, pages 88–93, June
2004.

[2] P. N. Belhumeur, D. W. Jacobs, D. Kriegman, and N. Kumar. Localizing parts of faces
using a consensus of exemplars. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 545–552, June 2011.

[3] H. Cevikalp and B. Triggs. Face recognition based on image sets. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2567–2573, June 2010.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM Review, 43(1):129–159, January 2001.

[5] Y.-C. Chen, V. M. Patel, and R. Chellappa. Dictionary-based face recognition from
video. In European Conference on Computer Vision, pages 766–779, October 2012.

[6] R. G. Cinbis, J. Verbeek, and C. Schmid. Unsupervised metric learning for face iden-
tification in TV video. In IEEE International Conference on Computer Vision, pages
1559–1566, November 2011.

[7] Z. Cui, S. Shan, H. Zhang, S. Lao, and X. Chen. Image sets alignment for video-based
face recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2626–2633, June 2012.

[8] M. Everingham, J. Sivic, and A. Zisserman. “Hello! my name is... Buffy” – automatic
naming of characters in TV video. In British Machine Vision Conference, volume 3,
pages 899–908, September 2006.

[9] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? Metric learning approaches
for face identification. In IEEE International Conference on Computer Vision, pages
498–505, September 2009.

[10] Y. Hu, A. S. Mian, and R. Owens. Sparse approximated nearest points for image set
classification. In IEEE Conference on Computer Vision and Pattern Recognition, pages
121–128, June 2011.

[11] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild:
a database for dtudying face recognition in unconstrained environments. Technical
Report 07-49, University of Massachusetts, Amherst, October 2007.

[12] A.D. Jepson, D.J. Fleet, and El-Maraghi. T.F. Robust online appearance model for
visual tracking. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 1:415–422, 2001.

[13] Z. Jiang, Z. Lin, and L. S. Davis. Label consistent K-SVD: learning a discriminative
dictionary for recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,
35(11):2651–2664, November 2013.



12 DU,CHELLAPPA: VIDEO-BASED FACE RECOGNITION

[14] M.Y. Kim, S. Kumar, V. Pavlovic, and H.A. Rowley. Face tracking and recognition
with visual constraints in real-world videos. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8, June 2008.

[15] T. K. Kim, J. Kittler, and R. Cipolla. Discriminative learning and recognition of image
set classes using canonical correlations. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 29(6):1005–1018, June 2007.

[16] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof. Annotated facial landmarks in
the wild: a large-scale, real-world database for facial landmark localization. In IEEE
International Workshop on Benchmarking Facial Image Analysis Technologies, pages
2144–2151, November 2011.

[17] K. Kurihara, M. Welling, and Teh Y. W. Collapsed variational Dirichlet process mixture
models. In International Joint Conference on Artificial Intelligence, pages 2796–2801,
January 2007.

[18] K. C. Lee, J. Ho, M. H. Yang, and D. Kriegman. Video-based face recognition us-
ing probabilistic appearance manifolds. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 1, pages 313–320, June 2003.

[19] X. Liu and T. Chen. Video-based face recognition using adaptive hidden Markov mod-
els. In IEEE Conference on Computer Vision and Pattern Recognition, volume 1, 2003.

[20] B. Moghaddam. Principal manifolds and probabilistic subspaces for visual recognition.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(6):780–788, 2002.

[21] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[22] E. G. Ortiz, A. Wright, and M. Shah. Face recognition in movie trailers via mean
sequence sparse representation-based classification. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 3531–3538, June 2013.

[23] R. Rubinstein, A. M. Bruckstein, and M. Elad. Dictionaries for sparse representation
modeling. Proceedings of the IEEE, 98(6):1045–1057, June 2010.

[24] J. Sivic, M. Everingham, and A. Zisserman. “Who are you?” – learning person specific
classifiers from video. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1145–1152, June 2009.

[25] R. Wang and X. Chen. Manifold discriminant analysis. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 429–436, June 2009.

[26] R. Wang, S. Shan, X. Chen, and G. Wen. Manifold-manifold distance with application
to face recognition based on image set. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, June 2008.

[27] R. Wang, H. Guo, L. Davis, and Q. Dai. Covariance discriminative learning: a natural
and efficient approach to image set classification. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2496–2503, June 2012.

[28] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via
sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 31
(2):210–227, 2009.



DU,CHELLAPPA: VIDEO-BASED FACE RECOGNITION 13

[29] J. Wu and J. M. Rehg. CENTRIST: A visual descriptor for scene categorization. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 33(8):1489–1501, 2011.

[30] O. Yamaguchi, K. Fukui, and K. Maeda. Face recognition using temporal image se-
quence. In IEEE International Conference on Automatic Face and Gesture Recogni-
tion, pages 318–323, April 1998.

[31] M. Yang, D. Zhang, X. Feng, and D. Zhang. Fisher discrimination dictionary learning
for sparse representation. In IEEE International Conference on Computer Vision, pages
543–550, Nov 2011.

[32] X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization
in the wild. In IEEE Conference on Computer Vision and Pattern Recognition, pages
2879–2886, June 2012.


